Skip to main content

Differential Calculus and Gauge Transformations on a Deformed Space

  • Chapter
  • First Online:
Noncommutative Spacetimes

Part of the book series: Lecture Notes in Physics ((LNP,volume 774))

  • 1138 Accesses

Deformed gauge transformations on deformed coordinate spaces are considered for any Lie algebra. The representation theory of this gauge group forces us to work in a deformed Lie algebra as well. This deformation rests on a twisted Hopf algebra, thus we can represent a twisted Hopf algebra on deformed spaces. That leads to the construction of Lagrangian invariant under a twisted Lie algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Inaugural lecture by Riemann 1854, in Riemann’s Vision of a New Approach to Geometry, Lecture Notes in Physics 402, Springer, Berlin/Heidelberg (1992).

    Google Scholar 

  2. H. Grosse and R. Wulkenhaar, Noncommutative QFT and renormalization, Fortschr. Phys. 54, 116 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  3. Letter of Heisenberg to Peierls (1930), in: Wolfgang Pauli, Scientific Correspondence, vol. II, 15, Ed. K. von Meyenn, Springer-Verlag, Berlin (1985).

    Google Scholar 

  4. H. S. Snyder, Quantized spacetime, Phys. Rev. 71, 38 (1947).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Letter of Pauli to Bohr (1947), in: Wolfgang Pauli, Scientific Correspondence, vol. II, 414, Ed. K. von Meyenn, Springer-Verlag, Berlin (1985).

    Google Scholar 

  6. V. G. Drinfel’d, Hopf algebras and the quantum Yang-Baxter equation, Sov. Math. Dokl. 32, 254 (1985).

    Google Scholar 

  7. L. D. Faddeev, N. Y. Reshetikhin and L. A. Takhtadzhyan, Quantisation of Lie groups and Lie algebras, Leningrad Math. J. 1, 193 (1990).

    MATH  MathSciNet  Google Scholar 

  8. M. Jimbo, A q -difference analogue of \(U(\mathfrak{g})\) and the Yang-Baxter equation, Lett. Math. Phys. 10, 63 (1985).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Y. I. Manin, Multiparametric quantum deformation of the general linear supergroup, Commun. Math. Phys. 123, 163 (1989).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Deformation theory and quantization, Ann. Phys. 111, 61 (1978).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. D. Sternheimer, Deformation quantization: Twenty years after, AIP Conf. Proc. 453, 107 (1998).

    ADS  MathSciNet  Google Scholar 

  12. Maxim Kontsevich, Deformation quantization of Poisson manifolds, I, Lett. Math. Phys. 66, 157-216 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Lukierski, A. Nowicki, H. Ruegg and V. N. Tolstoy, Q -deformation of Poincaré algebra, Phys. Lett. B264, 331 (1991).

    ADS  MathSciNet  Google Scholar 

  14. J. Lukierski, A. Nowicki and H. Ruegg, New quantum Poincaré algebra and κ-deformed field theory, Phys. Lett. B293, 344 (1992).

    ADS  MathSciNet  Google Scholar 

  15. E. Abe, Hopf Algebras, Cambridge University Press, Cambridge (1980).

    MATH  Google Scholar 

  16. H. Weyl, Quantenmechenik und Gruppentheorie, Z. Phys. 46, 1 (1927).

    Article  ADS  Google Scholar 

  17. J. E. Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Phil. Soc. 45, 99 (1949).

    Article  MATH  MathSciNet  Google Scholar 

  18. P. Aschieri, M. Dimitrijević, F. Meyer, S. Schraml and J. Wess, Twisted gauge theories, Lett. Math. Phys. 78, 61–71 (2006), [hep-th/0603024].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. D. V. Vassilevich, Twist to close, Mod. Phys. Lett. A 21, 1279 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. M. Chaichian and A. Tureanu, Twist symmetry and gauge invariance, Phys. Lett. B 637, 199–202 (2006), [hep-th/0604025].

    Article  ADS  MathSciNet  Google Scholar 

  21. P. Aschieri, C. Blohmann, M. Dimitrijević, F. Meyer, P. Schupp and J. Wess, A gravity theory on noncommutative spaces, Class. Quant. Grav. 22, 3511–3522 (2005), [hep-th/0504183].

    Article  MATH  ADS  Google Scholar 

  22. P. Aschieri, M. Dimitrijević, F. Meyer and J. Wess, Noncommutative geometry and gravity, Class. Quant. Grav. 23, 1883–1912 (2006), [hep-th/0510059].

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Wess, J. (2009). Differential Calculus and Gauge Transformations on a Deformed Space. In: Noncommutative Spacetimes. Lecture Notes in Physics, vol 774. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89793-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89793-4_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89792-7

  • Online ISBN: 978-3-540-89793-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics