Skip to main content

Specific Examples of Critical Path Analysis

  • Chapter
  • First Online:
Percolation Theory for Flow in Porous Media

Part of the book series: Lecture Notes in Physics ((LNP,volume 771))

At the end of Chap. 2 the general technique of critical path analysis was introduced within the framework of the electrical conductivity of disordered systems. In many systems the charges that move between these sites are electrons, but in some cases they may be ions, or even protons. Critical path analysis will actually form the basis of much of the remainder of this book. However, there are some subtleties to the technique, and its application cannot be so easily generalized as sometimes assumed. To some extent every case or system must be evaluated separately. In typical solid-state applications conductances are connected between sites, which are located randomly in space (why?1) meaning that the critical bond fractions from the lattice models of Chap. 1 are not directly applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sahimi, M., 1993, Fractal and superdiffusive transport and hydrodynamic dispersion in heterogeneous porous media,Transp. Porous Media 13: 3–40.

    Article  Google Scholar 

  2. Sahimi, M., 1993, Flow phenomena in rocks – from continuum models to fractals, percolation, cellular automata, and simulated annealing,Rev. Mod. Phys. 65(4): 1393–1534.

    Article  Google Scholar 

  3. Ambegaokar, V. N., B. I. Halperin, and J. S. Langer, 1971, Hopping conductivity in disordered systems.Phys. Rev. B 4: 2612–2621.

    Article  Google Scholar 

  4. Miller, A., and E. Abrahams 1960,Impurity conduction at low concentrations,Phys. Rev. 120: 745.

    Google Scholar 

  5. Seager, C. H., and G. E., Pike, 1974, Percolation and conductivity: a computer study II,Phys. Rev. B 10: 1435–1446.

    Article  Google Scholar 

  6. Hunt, A. G., 2001, AC hopping conduction: perspective from percolation theory,Philos. Mag.B 81: 875–913.

    Article  Google Scholar 

  7. Long, A. R., J. McMillen, N. Balkan, and S. Summerfield, 1988, The application of the extended pair approximation to hopping conduction in rf sputtered amorphous silicon,Phil. Mag. B 58: 153–169.

    Article  Google Scholar 

  8. Long, A. R., and L. Hansmann, 1990,Hopping and Related Phenomena, ed. M. Pollak and H. Fritzsche, World Scientific, Singapore, p. 309.

    Google Scholar 

  9. Stauffer, D., and A. Aharony, 1994,Introduction to Percolation Theory, 2nd edition, Taylor and Francis, London.

    Google Scholar 

  10. Skaggs, T. H., 2003, Effects of finite system size and finite heterogeneity on the conductivity of broadly distributed resistor networks,Physica B,338: 266–269.

    Article  Google Scholar 

  11. Berkowitz, B., and I. Balberg, 1993, Percolation theory and its application to groundwater hydrology,Water Resour. Res. 29: 775–794.

    Article  Google Scholar 

  12. Pollak, M., 1972, A percolation treatment of dc hopping conduction.J. Non-Cryst. Solids 11: 1–24.

    Article  Google Scholar 

  13. Mott, N. F., 1969,Conduction in non-crystalline materials 3. Localized states in a pseudo gap and near extremities of conduction and valence bands, Phil. Mag. 19: 835.

    Google Scholar 

  14. Hunt, A. G., 2001, Applications of percolation theory to porous media with distributed local conductances,Adv. Water Resour. 24(3,4): 279–307.

    Google Scholar 

  15. Moldrup, P., T. Oleson, T. Komatsu, P. Schjoning, and D. E. Rolston, 2001, Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases.Soil Sci. Soc. Am. J. 65: 613–623.

    Google Scholar 

  16. Balberg, I., 1987, Recent developments in continuum percolation,Philos. Mag. B 30: 991–1003.

    Google Scholar 

  17. Kogut, P. M. and J. Straley, 1979, Distribution-induced non-universality of the percolation conductivity exponents,J. Phys. C. Solid State Phys. 12: 2151–2159.

    Google Scholar 

  18. Le Doussal, P., 1989, Permeability versus conductivity for porous media with wide distribution of pore sizes,Phys. Rev. B 39: 4816–19.

    Google Scholar 

  19. Banavar, J. R., and D. L. Johnson, 1987, Characteristic pore sizes and transport in porous media,Phys. Rev. B 35: 7283–7286.

    Article  Google Scholar 

  20. Katz, A. J., and A. H. Thompson, 1986, Quantitative prediction of permeability in porous rock,Phys. Rev. B 34: 8179–8181.

    Article  Google Scholar 

  21. Hunt, A. G., and G. W. Gee, 2002, Application of critical path analysis to fractal porous media: comparison with examples from the Hanford site,Adv. Water Resour.,25: 129–146.

    Article  Google Scholar 

  22. Kozeny, J., 1927, Ueber Kapillare Leitung des Wasssers im Boden,Sitzungsber. Adak. Wiss. Wien,136: 271–306.

    Google Scholar 

  23. Carman, P. C. 1956,Flow of Gases Through Porous Media, Butterworths, London.

    Google Scholar 

  24. Johnson, D. L., and L. M. Schwartz, 1989, Unified theory of geometric effects in transport properties of porous media. In Paper presented at SPWLA, 30th Annual Logging Symposium, Soc. of Prof. Well Log. Anal. Houston, TX.

    Google Scholar 

  25. Bernabe, Y., and A. Revil, 1995, Pore-scale heterogeneity, energy dissipation and the transport properties of rocks, Geophys. Res. Lett. 22: 1529–32.

    Google Scholar 

  26. Torquato, S., and B. Lu, 1990, Rigorous bounds on the fluid permeability: effect of polydispersivity in grain size,Phys. Fluids A 2: 487–490.

    Article  Google Scholar 

  27. Bernabe, Y., and C. Bruderer, 1998, Effect of the variance of pore size distribution on the transport properties of heterogeneous networks,J. Geophys. Res., 103: 513.

    Article  Google Scholar 

  28. van Genuchten, M. T., 1980, A closed form equation for predicting the hydraulic conductivity of unsaturated soils,Soil Sci. Am. J., 44: 892–898.

    Google Scholar 

  29. Millington, R. J., and J. P. Quirk, 1959, Permeability of porous media.Nature (London)183: 387–388.

    Article  Google Scholar 

  30. Millington, R. J., and J. P. Quirk, 1961, Permeability of porous media,Trans. Faraday Soc. 57: 1200–1208.

    Article  Google Scholar 

  31. Childs, E. C., and N. Collis-George, 1950, The permeability of porous materials,Proc. Royal Soc. London, Ser. A 201: 392–405.

    Article  Google Scholar 

  32. Blunt, M. J., and H. Scher, 1995, Pore-level model of wetting,Phys. Rev. E,52: 6387–403.

    Article  Google Scholar 

  33. Tokunaga, T., and J. Wan, 1997, Water film flow along fracture surfaces of porous rock,Water Resour. Res. 33: 1287–1295.

    Article  Google Scholar 

  34. Hunt, A. G., 2004, Percolative transport and fractal porous media,Chaos Solitons Fractals 19: 309–325.

    Article  Google Scholar 

  35. Scheibe, T., and S. Yabusaki, 1998, Scaling of flow and transport behavior in heterogeneous groundwater systems,Adv. Water Resour. 22: 223–238.

    Article  Google Scholar 

  36. Deutsch, C. V., 1989, Calculating effective absolute permeability in sandstone/shale sequences,SPE Form Eval,4(3): 343–348.

    Google Scholar 

  37. Desbarats, A., 1992, Spatial averaging of hydraulic conductivity in 3-dimensional heterogeneous porous-media.Math Geol. 24(3): 249–267.

    Article  Google Scholar 

  38. Vyssotsky, V. A., S. B. Gordon, H. L. Frisch, and J. M. Hammersley, 1961, Critical percolation probabilities (bond problem),Phys. Rev. 123: 1566–1567.

    Article  Google Scholar 

  39. Hunt, A. G., and B. Idriss, 2009, Percolation-based effective conductivity calculations for bimodal distributions of local conductances, Phil. Mag. in press. 118

    Google Scholar 

  40. Friedman, L., and M. Pollak, 1981, The hall effect in the variable-range hopping system,Philos. Mag. B 44: 487–507.

    Article  Google Scholar 

  41. Shklovskii, B. I., and A. L. Efros, 1984,Electronic Properties of Doped Semiconductors, Springer, Heidelberg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen Hunt .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hunt, A., Ewing, R. (2009). Specific Examples of Critical Path Analysis. In: Percolation Theory for Flow in Porous Media. Lecture Notes in Physics, vol 771. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89790-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89790-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89789-7

  • Online ISBN: 978-3-540-89790-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics