Use of CFD for Thermal Coupling in Aeroengine Internal Air Systems Applications

  • Zixiang Sun
  • John W. Chew
  • Nicholas J. Hills
Conference paper


With the rapid progress of computational fluid dynamics (CFD) and computer technology, CFD has been increasingly used for aero-engine component temperature predictions. This paper presents a review of the latest progress in this aspect with emphasis on internal air system applications. The thermal coupling methods discussed include the traditional finite element analysis (FEA), the conjugate heat transfer, FEA/CFD coupling procedure and other thermal coupling techniques. Special attention is made to identify the merits and disadvantages between the various methodologies. Discussion is further extended on the steady and transient thermal coupling applications.


thermal coupling computational fluid dynamics finite element analysis internal air systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alizadeh, S., Mabilat C., Jackson D. and Clarkson R., 2008, “Conjugate Heat transfer study of a biaxial rig: application to the lifing of HP turbine disc firtrees”, Proc. ASME Turbo Expo 2008, Paper no. GT2008-51297, pp. 1–13. June 9–13, 2008, Berlin GermanyGoogle Scholar
  2. Alizadeh, S., Saunders, K., Lewis, L.V. and Provins, J., 2007, “The Use of CFD to Generate Heat Transfer Boundary Conditions for a Rotor-Stator Cavity in a Compressor Drum Thermal Model”, GT2007-28333, ASME Turbo Expo 2007, May 14–17, 2007, Montreal, CanadaGoogle Scholar
  3. Benito, D., Dixon, J and Metherell, P. 2008, “3D Thermo-mechanical modeling method to predict compressor local tip running clearances”, Proc. ASME Turbo Expo 2008, Paper no. GT2008-50780, pp. 1–10. June 9–13, 2008, Berlin, GermanyGoogle Scholar
  4. Bohn, D., Bonhoff, H., Schonenborn, H. and Wihelmi, H., 1995, “Validation of a Numerical Model for the Coupled Simulation of Fluid Flow and Adiabatic Walls with Application to Film-Cooled Turbine Blades”, VDI-Berichte 1186, pp. 259–272Google Scholar
  5. Bohn, D., Kruger, U. and Kusterer, K., 2001, “Conjugate Heat Transfer: An Advanced Computational Method for the Cooling Design of Modern Gas Turbine Blades and Vanes”, Heat Transfer in Gas Turbine, eds. Sunden B. and Faghri M., pp. 58–108, WIT Press, Southampton, UKGoogle Scholar
  6. Bohn, D., Ren, J. and Kusterer, K., 2003, “Conjugate Heat Transfer Analysis for Film Cooling Configurations with Different Hole Geometries”, ASME 2003-GT-38369Google Scholar
  7. Chew, J.W. and Hills, N.J., 2007, “CFD for Turbomachinery Internal Air Systems”, Philosophical transactions of the Royal Society (Series A), Aerospace CFD Theme IssueGoogle Scholar
  8. Chew, J. W.; Taylor, I. J.; Bonsell, J. J., 1996, “CFD developments for turbine blade heat transfer”, IMECHE CONFERENCE TRANSACTIONS — 1996; VOL 1; Pages: 51–64Google Scholar
  9. Heselhaus, A., Vogel, D.T. and Krain, H, 1992, “Coupling of 3D-Navier-Stokes External Flow Calculations and Internal 3D-Heat Conduction Calculations for Cooled Turbine Blades”, AGARD, p. 40.1–40.9Google Scholar
  10. Dixon, J. A., Verdicchio, J. A., Benito, D., Karl, A. and Tham, K. M., 2004, “Recent developments in gas Turbine component temperature prediction methods, using computational fluid dynamics and optimization tools, in conjunction with more conventional finite element analysis techniques”, Proc. Instn Mech. Engrs, Vol. 218, Part A; J. Power and Energy, pp. 241–255CrossRefGoogle Scholar
  11. Davison J.B., Ferguson S. W., Mendonca, F.G., Peck A. F. and Thompson, A., 2008, “Towards an automated simulation process in combined thermal, flow and stress in turbine blade cooling analysis”, Proc. ASME Turbo Expo 2008, Paper no. GT2008-51287, pp. 1–8. June 9–13, 2008, Berlin GermanyGoogle Scholar
  12. Illingworth, J.B., Hills, N. J. and Barnes, C.J., 2005, “3D Fluid-Solid Heat Transfer Coupling of an Aero Engine Pre-Swirl System”, GT2005-68939, ASME Turbo Expo 2005, June 6–9, 2005, Reno-Tahoe, Navada, USAGoogle Scholar
  13. Kusterer, K., Bohn, D. Sugimoto, T. and Tanaka, R., 2004, “Conjugate Calculations for a Film-Cooled Blade under Different Operating Conditions”, ASME 2004-GT-53719Google Scholar
  14. Lewis, L. V. and Provins, J. I., 2004, “A Non-Coupled CFD-FE Procedure to Evaluate Windage and Heat Transfer in Rotor-Stator Cavities”, ASME GT2004-53246, ASME Turbo Expo 2004, June 14–17, 2004, Vienna, AustriaGoogle Scholar
  15. Li, H. and Kassab, A. J., 1994, “A Coupled FVM/BEM Approach to Conjugate Heat Transfer in Turbine Blades”, AIAA paper 94-1981Google Scholar
  16. Mirzamoghadam, A.V., and Xiao, Z., 2002, “Flow and Heat Transfer in an Industrial Rotor-Stator Rim Sealing Cavity”, ASME Journal of Engineering for Gas Turbines and Power, Vol. 124, pp. 125–132, 2002CrossRefGoogle Scholar
  17. Okita, Y., 2006, “Transient thermal and flow field in a turbine disk rotor-stator system”, Proc. ASME Turbo Expo 2006, Paper no. GT2006-90033, pp. 1–11. May 8–11, 2006, Barcelona, SpainGoogle Scholar
  18. Okita, Y. and Yamawaki, S. 2002, “Conjugate Heat Transfer Analysis of Turbine Rotor-Stator Systems”, ASME 2002-GT-30615Google Scholar
  19. Rigby, D. L. and Lepicovsky, J., 2001, “Conjugate Heat Transfer Analysis of Internally Cooled Configurations”, ASME 2001-GT-0405Google Scholar
  20. Starke C. and Janke E., Hofer T. and Lengani D., 2008, “Comparison of a conventional thermal analysis of a turbine cascase to a full conjugate heat transfer computation”, Proc. ASME Turbo Expo 2008, Paper no. GT2008-51151, pp. 1–11. June 9–13, 2008, Berlin GermanyGoogle Scholar
  21. Verdicchio, J.A., Chew, J.W., and Hills, N.J., 2001, “Coupled Fluid/Solid Heat Transfer Computation for Turbine Discs”, ASME paper 2001-GT-0123Google Scholar

Copyright information

© Tsinghua University Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg 2009

Authors and Affiliations

  • Zixiang Sun
    • 1
  • John W. Chew
    • 1
  • Nicholas J. Hills
    • 1
  1. 1.Thermo-Fluid Systems UTC, School of EngineeringUniversity of SurreyGuildford, SurreyUK

Personalised recommendations