Skip to main content

Microchannel Heat Sinking: Analysis and Optimization

  • Conference paper

Abstract

The present study reviews numerical optimizations of microchannel heat sink with the help of surrogate analysis. The design variables are decided from geometric and shape parameters that influence the performance of the microchannel heat sink. The basic surrogate models are explored with three-dimensional numerical analysis. The single objective optimization is performed taking thermal resistance as objective function and pumping power as constraint while multiobjective optimization is performed taking both thermal resistance and pumping power as objective functions. The sensitivity of the objective function is explored near the optimum point and distribution of the design variables are checked over the Pareto optimal front to analysis the contribution of the design variables to the objective functions. This analysis provides the designer a wide view to economically compromise with design variables considering fabrication methods and available pumping power sources.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arulanandam S., and Li D., 2000, “Liquid transport in rectangular microchannels by electroosmotic pumping,” Coll Surf-A: Physicochemical Engineering Aspects, Vol. 161, pp. 89–102

    Article  Google Scholar 

  • CFX-11.0, 2006, Solver Theory

    Google Scholar 

  • Cheng, Y. J., 2007, “Numerical Simulation of stacked microchannel heat sink with mixing-enhanced passive structure,” Int. Comm. in Heat Mass Trans., Vol. 34, pp. 295–303

    Article  Google Scholar 

  • Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T., 2000, “A Fast and Elitist Multi-Objective Genetic Algorithm for Multi-Objective Optimization: NSGA-II,” Proceedings of the Parallel Problem Solving From Nature VI Conference, Paris, pp. 849–858

    Google Scholar 

  • Deb, K., and Goel, T., 2001“A Hybrid Multi-Objective Evolutionary Approach to Engineering Shape Design,” Proceedings of evolutionary multi-criterion optimization conference, Zurich, pp. 385–399

    Google Scholar 

  • Fisher, T. S., and Torrance, K. E., 2001, “Optimal Shapes of Fully Embedded Channels for Conjugate Cooling,” IEEE Trans. Adv. Packag., Vol. 24(4), pp. 555–562

    Article  Google Scholar 

  • Herwig, H., Hausner, O., 2003, “Critical View on “New Results in Micro-fluid Mechanics”: an Example”, Int. J. Heat Mass Transf. Vol. 46, pp. 935–937

    Article  Google Scholar 

  • Herwig, H., and Mahulikar, S. P., 2006, “Variable property effects in single-phase incompressible flows through microchannels”, International Journal of Thermal Sciences Vol. 45(10), pp. 977–981

    Article  Google Scholar 

  • Husain, A., and Kim, K.-Y., 2008a, “Shape Optimization of Microchannel Heat Sink for Micro-Electronic Cooling,” IEEE Trans. Compon. Packag. Technol., Vol. 31(2), pp. 322–330

    Article  Google Scholar 

  • Husain, A., and Kim, K.-Y., 2008b, “Microchannel heat sink designed roughness: Analysis and optimization”, J. Therm. Heat Transf., Vol. 22, No.3, pp. 342–351

    Article  Google Scholar 

  • Husain, A., and Kim, K.-Y., 2008c, “Optimization of microchannel heat sink with temperature dependent fluid properties”, Appl. Therm. Eng. Vol. 28. pp. 1101–1107

    Article  Google Scholar 

  • Joshi Y., and Wei X., 2005, “Micro and meso scale compact heat exchangers in electronics thermal management-A review,” In: Shah R. K., Ishizuka M., Rudy T. M., and Wadekar V. V. (ed), Proceedings of fifth international conference on Enhanced, Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology, Engineering Conferences International, Hoboken, NJ, USA

    Google Scholar 

  • Kim, S. J., 2004, “Methods for Thermal Optimization of Microchannel Heat Sinks,” Heat Transf. Engg., Vol. 25(1), pp. 37–49

    Article  Google Scholar 

  • Knight, R. W., Hall, D. J., Goodling, J. S., and Jaeger, R. C., 1992, “Heat Sink Optimization with Application to Microchannels,” IEEE Trans. Compon., Hybrids, Manufact. Technol., Vol. 15(5), pp. 832–842

    Article  Google Scholar 

  • Li, J., and Peterson, G. P. “Bud”, 2006, “Geometric Optimization of a Micro Heat Sink with Liquid Flow,” IEEE Trans. Compon. Packag. Technol., Vol. 29(1), pp. 145–154

    Article  MATH  Google Scholar 

  • Li, Z., Huai, X., Tao, Y. and Chen, H., 2007, “Effects of Thermal Property Variations on the Liquid Flow and Heat Transfer in Microchannel Heat Sinks”, Appl. Thermal Eng., Vol. 27, 2803–2814

    Article  Google Scholar 

  • Ligrani, P. M., Oliveira, M. M., and Blaskovich, T., 2003, “Comparison of Heat Transfer Augmentation Techniques,” AIAA Journal, Vo. 41(3), pp. 337–362

    Article  Google Scholar 

  • Liu, D., and Garimella, S. V., 2005, “Analysis and Optimization of the Thermal Performance of Microchannel Heat Sinks,” International Journal for numerical methods in Heat and Fluid flow, Vol. 15(1), pp. 7–26

    Article  MATH  Google Scholar 

  • Lophaven, S. N.; Nielsen, H. B. and Sondergaard, J., 2002, “A MATLAB Kriging Toolbox”, Technical Report IMM-TR2002-12

    Google Scholar 

  • Morini, G. L., 2004, “Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results, Int. J. Thermal. Sci., Vol. 43, 631–651

    Article  Google Scholar 

  • Morini G. L., Lorenzini M., Salvigni S., and Spiga M., 2006, “Thermal performance of silicon micro heat-sinks with electrokinetically-driven flows,” International Journal of Thermal Science, Vol. 45, pp. 955–961

    Article  Google Scholar 

  • Myers, R. H., and Montgomery, D. C., 1995, “Response Surface Methodology: Process and Product Optimization using Designed Experiments”, John Wiley & Sons, Inc., New York

    MATH  Google Scholar 

  • Orr, M. J. L., 1996, “Introduction to radial basis neural networks, Center for cognitive science, Edinburgh University, Scotland, UK. http://anc.ed.ac.uk/RBNN/

    Google Scholar 

  • Patankar, S. V., 1980, “Numerical Heat Transfer and Fluid Flow”, McGraw-Hill, New York

    MATH  Google Scholar 

  • Tuckerman, D. B., and Pease, R. F. W., 1981, “High-performance Heat Sinking for VLSI,” IEEE Electron device Lett., EDL-2, pp. 126–129

    Google Scholar 

  • Vanderplaats, G. N., 1984, “Numerical Optimization Techniques for Engineering Design: with Applications, McGraw-Hill, New York

    MATH  Google Scholar 

  • Wang, X.-Q., Yap, C., and Mujumdar, A. S., 2005, “Effects of Two-Dimensional Roughness in Flow in Microchannels,” Journal of Electronic Packaging, Vol. 127, pp. 357–361

    Article  Google Scholar 

  • Wei, X., and Joshi, Y., 2003, “Optimization Study of Stacked Microchannel Heat Sinks for Micro-electronic Cooling,” IEEE Trans. Compon. Packag. Technol., Vol. 26(1), pp. 55–61

    Article  Google Scholar 

  • Wei, X. J., Joshi, Y. K., and Ligrani, P. M., 2007, “Numerical Simulation of Laminar Flow and Heat Transfer Inside a Microchannel With One Dimpled Surface,” Journal of Electronic Packaging, Vol. 129, pp. 63–70

    Article  Google Scholar 

  • Weisberg, A., Bau, H. H., and Zemel, J. N., 1992, “Analysis of Microchannels for Integrated Cooling,” Int. J. Heat Mass Transf., Vol. 35(10), pp. 2465–2474

    Article  Google Scholar 

  • Xu, B., Ooi, K. T., Mavriplis, C. and Zaghloul, M. E., 2003, “Evaluation of Viscous Dissipation in Liquid Flow in Microchannels”, J. Micromech. Microeng. Vol. 13, 53–57

    Article  Google Scholar 

  • Yener, Y., Kakac, S., Avelino, M., Okutucu, T., 2005, “Single-phase forced convection in microchannels: A State-of-the-Art Review”, in Microscale Heat Transfer: Fundamentals and Applications, Ed. by Kakac, S., Vasiliev, L. L., Bayazitoglu, Y. and Yener, Y., Springer, Neatherlands, 1–24

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Tsinghua University Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Husain, A., Kim, KY. (2009). Microchannel Heat Sinking: Analysis and Optimization. In: Xu, J., Wu, Y., Zhang, Y., Zhang, J. (eds) Fluid Machinery and Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89749-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89749-1_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89748-4

  • Online ISBN: 978-3-540-89749-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics