Network-Based Analysis of Beijing SARS Data

  • Xiaolong Zheng
  • Daniel Zeng
  • Aaron Sun
  • Yuan Luo
  • Quanyi Wang
  • Feiyue Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5354)


In this paper, we analyze Beijing SARS data using methods developed from the complex network analysis literature. Three kinds of SARS-related networks were constructed and analyzed, including the patient contact network, the weighted location (district) network, and the weighted occupation network. We demonstrate that a network-based data analysis framework can help evaluate various control strategies. For instance, in the case of SARS, a general randomized immunization control strategy may not be effective. Instead, a strategy that focuses on nodes (e.g., patients, locations, or occupations) with high degree and strength may lead to more effective outbreak control and management.


SARS Complex network analysis Weighted networks 


  1. [1]
    Wang, J.F., Christakos, G., Han, W., Meng, B.: Data-driven exploration of ’spatial pattern-time process-driving forces’ associations of SARS epidemic in Beijing, China. Journal of Public Health, 1–11 (2008)Google Scholar
  2. [2]
    Meyers, L.A., Pourbohloul, B., Newman, M.E.J., Skowronski, D.M., Brunham, R.C.: Network theory and SARS: predicting outbreak diversity. Journal of Theoretical Biology 232, 71–81 (2005)MathSciNetCrossRefGoogle Scholar
  3. [3]
    Riley, S., et al.: Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science 300, 1961–1966 (2003)CrossRefGoogle Scholar
  4. [4]
    Dye, C., Gay, N.: Modeling the SARS Epidemic. Science 300, 1884–1885 (2003)CrossRefGoogle Scholar
  5. [5]
    Becker, N.G., Glass, K., Li, Z., Aldis, G.K.: Controlling emerging infectious diseases like SARS. Mathematical Biosciences 193, 205–221 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Small, M., Tse, C.K.: Clustering model for transmission of the SARS virus: application to epidemic control and risk assessment. Physica A: Statistical Mechanics and its Applications 351, 499–511 (2005)CrossRefGoogle Scholar
  7. [7]
    Barrat, A., Barthélemy, M., PastorSatorras, R., Vespignani, A.: The architecture of complex weighted networks. Proceedings of the National Academy of Sciences of the United States of America 101, 3747–3752 (2004)CrossRefGoogle Scholar
  8. [8]
    May, R.M., Lloyd, A.L.: Infection dynamics on scale-free networks. Physical Review E 64, 066112 (2001)CrossRefGoogle Scholar
  9. [9]
    Newman, M.E.J.: Spread of epidemic disease on networks. Physical Review E 66, 016128 (2002)MathSciNetCrossRefGoogle Scholar
  10. [10]
    Pastor-Satorras, R., Vespignani, A.: Epidemic Spreading in Scale-Free Networks. Physical Review Letters 86, 3200 (2001)CrossRefGoogle Scholar
  11. [11]
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Vazquez, A.: Causal tree of disease transmission and the spreading of infectious diseases. DIMACS Series in Discrete Mathematics and Theoretical Computer Science 70, 163–179 (2006)MathSciNetGoogle Scholar
  13. [13]
    Haydon, D.T., Chase-Topping, M., Shaw, D.J., Matthews, L., Friar, J.K., Wilesmith, J., Woolhouse, M.E.J.: The construction and analysis of epidemic trees with reference to the 2001 UK foot-and-mouth outbreak. Proceedings of Royal Society London B 270 (2003)Google Scholar
  14. [14]
    Liljeros, F., Edling, C.R., Amaral, L.A.N.: Sexual networks: implications for the transmission of sexually transmitted infections. Microbes and Infection 5, 189–196 (2003)CrossRefGoogle Scholar
  15. [15]
    Shen, Z., Ning, F., Zhou, W., He, X., Liu, C., Chin, D.P., Zhu, Z., Schuchat, A.: Superspreading SARS Events, Beijing, 2003. Emerging Infectious Diseases 10, 256–260 (2004)CrossRefGoogle Scholar
  16. [16]
    Chen, Y., Tseng, C., King, C., Wu, T.J., Chen, H.: Incorporating Geographical Contacts into Social Network Analysis for Contact Tracing in Epidemiology: A Study on Taiwan SARS Data. In: Zeng, D., Gotham, I., Komatsu, K., Lynch, C., Thurmond, M., Madigan, D., Lober, B., Kvach, J., Chen, H. (eds.) BioSurveillance 2007. LNCS, vol. 4506, pp. 23–36. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. [17]
    Bagler, G.: Analysis of the airport network of India as a complex weighted network. Physica A: Statistical Mechanics and its Applications 387, 2972–2980 (2008)CrossRefGoogle Scholar
  18. [18]
    Vazquez, A.: Epidemic outbreaks on structured populations. Journal of Theoretical Biology 245, 125–129 (2007)MathSciNetCrossRefGoogle Scholar
  19. [19]
    Clauset, A., Moore, C., Newman, M.E.J.: Hierarchical structure and the prediction of missing links in networks. Nature 453, 98–101 (2008)CrossRefGoogle Scholar
  20. [20]
    Hao, M., Irwin, K., Michael, R.L.: Effective missing data prediction for collaborative filtering. In: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval. ACM, Amsterdam (2007)Google Scholar
  21. [21]
    Ronald, K.P.: The problem of disguised missing data. SIGKDD Explorations Newsletters 8, 83–92 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Xiaolong Zheng
    • 1
  • Daniel Zeng
    • 1
    • 2
  • Aaron Sun
    • 2
  • Yuan Luo
    • 1
  • Quanyi Wang
    • 3
  • Feiyue Wang
    • 1
  1. 1.The Key Lab of Complex Systems and Intelligence ScienceInstitute of Automation, Chinese Academy of SciencesChina
  2. 2.Department of Management Information SystemsThe University of ArizonaUSA
  3. 3.Beijing Center for Disease Control and PreventionChina

Personalised recommendations