Bio-surveillance Event Models, Open Source Intelligence, and the Semantic Web

  • Nancy Grady
  • Lowell Vizenor
  • Jeanne Sappington Marin
  • Laura Peitersen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5354)


Surveillance applications to monitor health-related data have matured rapidly over the last several years. A newly emerging development is an emphasis on harvesting and evaluating the timely but potentially inaccurate information present in unstructured sources such as Internet news feeds and sites. An important development for the surveillance on both structured and unstructured datasets is the exchange not of the primary datasets that feed these systems, but of the evaluated results of such analysis. This paper introduces recent work addressing a model for the recording and tracking of events and for the dissemination of information about these events to other agencies. It will introduce a structured relational database model for events, an ontology for infectious disease events, and a semantic web representation. The strengths and weaknesses of the three approaches and future directions will be discussed.


Biosurveillance open source intelligence event model ontology semantic web 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Freifeld, C.C., Mandl, K.D., Reis, B.Y., Brownstein, J.S.: HealthMap: Global Infectious Disease Monitoring through Automated Classification and Visualization of Internet Media Reports. J. Am. Med. Inform. Assoc. 15, 150–157 (2008)CrossRefGoogle Scholar
  2. 2.
    Wilson, J.M., Polyak, M.G., Blake, J.W., Collmann, J.: A Heuristic Indication and Warning Staging Model for Detection and Assessment of Biological Events. J. Am. Med. Inform. Assoc. 15, 158–171 (2008)CrossRefGoogle Scholar
  3. 3.
    Centers for Disease Control and Prevention, Office of Critical Information Integration and Exchange (CVHG),
  4. 4.
    Grady, N.W., Jones, J.H., Vizenor, L., Dudley, J.P., Marin, J.S., Havey, A., Sabo, T., Champoux, R., Hogan, R.L., Beal, D., Peitersen, L., Orr, J., Kropp, K., Smith, K.L.: Data Integration and Analytics within the National Bio-Surveillance Integration System. Advances in Disease Surveillance 4, 94 (2007)Google Scholar
  5. 5.
    Smith, K.L.: Statement to the House, Subcommittee on Prevention of Nuclear and Biological Attack, Creating a Nation-wide, Integrated Biosurveillance Network, Hearing (May 11, 2006),
  6. 6.
    Smith, K.L.: Keynote Presentation at the NSF Biosurveillance workshop. New Brunswick, NJ (2007)Google Scholar
  7. 7.
    Curbezy, M., O’Conner, M., Pincus, A., Musen, M.A., Buckeridge, D.L.: Ontology-Centered Syndromic Surveillance for BioTerrorism. IEEE Intel. Systems 20, 26–35 (2005)CrossRefGoogle Scholar
  8. 8.
    Buckeridge, D.L., Graham, J., O’Connor, M.J., Choy, M.K., Tu, S.W., Musen, M.A.: Knowledge-Based Bioterroism Surveillance. In: Proc. AMIA Symp., pp. 76–80 (2002)Google Scholar
  9. 9.
    Kawazoe, A., Chanlekha, H., Shigematsu, M., Collier, N.: Structuring an event ontology for disease outbreak detection. BMC Bioinformatics 9, S8 (2008)CrossRefGoogle Scholar
  10. 10.
    Chaudet, H.: Extending the event calculus for tracking epidemic spread. Artificial Intelligence in Medicine 38, 137–156 (2006)CrossRefGoogle Scholar
  11. 11.
    National Center for Biotechnology Information Taxonomy,
  12. 12.
    Dudley, J.P., Marin, J.S., Peitersen, L.: OSINT Using Text Reports of Official Comments Official Actions & Anomalies during HPAI Outbreaks. Technical Report for NBISGoogle Scholar
  13. 13.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM, 832–843 (26/11/1983)Google Scholar
  14. 14.
    Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Proc. 3rd Int. Conf. on Knowledge Representation and Reasoning, pp. 165–176. Morgan Kaufmann, San Mateo (1992)Google Scholar
  15. 15.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American Magazine (May 17, 2001)Google Scholar
  16. 16.
    W3C Sementic Web Education and Outreach Interest Group Community Project,
  17. 17.
    Roddick, J.F., Spilopoulou, M., Lister, D., Ceglar, A.: Higher Order Mining. In: SIGKDD Explorations, vol. 10, pp. 5–17 (2008)Google Scholar
  18. 18.
    Chute, C.G.: Biosurveillance, Classification, and Semantic Health Technologies. J. Am. Med. Inform. Assoc. 15, 172–173 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Nancy Grady
    • 1
  • Lowell Vizenor
    • 2
    • 3
  • Jeanne Sappington Marin
    • 4
  • Laura Peitersen
    • 5
  1. 1.Science Applications International CorporationOak RidgeUSA
  2. 2.Computer Task GroupBuffaloUSA
  3. 3.Formerly of Ontology WorksBaltimoreUSA
  4. 4.Science Applications International Corporation, 1001 Research ParkCharlottesvilleUSA
  5. 5.Science Applications International CorporationVirginiaUSA

Personalised recommendations