Simulation of Multivariate Spatial-Temporal Outbreak Data for Detection Algorithm Evaluation

  • Min Zhang
  • Xiaohui Kong
  • Garrick L. Wallstrom
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5354)


We developed a template-driven spatial-temporal multivariate outbreak simulator that can generate multiple data streams of outbreak data for evaluating detection algorithms used in disease surveillance systems. The simulator is controlled via intuitive parameters that describe features of the outbreak and surveillance system such as the elevated risk of disease, surveillance data coverage, case behavior probabilities, and the distribution of behavior times. We provide examples of temporal and spatial-temporal outbreak simulations. Our simulator is a useful tool for evaluating of outbreak detection algorithms.


Outbreak simulation multivariate biosurveillance data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wong, W.-K., Moore, A.W.: Classical time-series methods for biosurveillance. In: Wagner, M.M., Moore, A.W., Aryel, R.A. (eds.) Handbook of biosurveillance, pp. 217–234. Academic Press, New York (2006)CrossRefGoogle Scholar
  2. 2.
    Lawson, A.B., Kleinman, K.: Spatial & syndromic surveillance for public health. John Wiley & Sons, West Sussex (2005)CrossRefGoogle Scholar
  3. 3.
    Kulldorff, M., et al.: Multivariate scan statistics for disease surveillance. Statistics in Medicine 26(8), 1824–1833 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hogan, W.R., et al.: The Bayesian aerosol release detector: an algorithm for detecting and characterizing outbreaks caused by an atmospheric release of Bacillus anthracis. Statistics in Medicine 26(29), 5225–5252 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Watkins, R.E., et al.: Using GIS to create synthetic disease outbreaks. BMC Medical Informatics & Decision Making 7, 4 (2007)CrossRefGoogle Scholar
  6. 6.
    Reis, B.Y., Pagano, M., Mandl, K.D.: Using temporal context to improve biosurveillance. Proceedings of the National Academy of Sciences of the United States of America 100(4), 1961–1965 (2003)CrossRefGoogle Scholar
  7. 7.
    Daniel, B.N., et al.: Detection of emerging space-time clusters. In: Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining. ACM, Chicago (2005)Google Scholar
  8. 8.
    Cassa, C.A., et al.: A software tool for creating simulated outbreaks to benchmark surveillance systems. BMC Medical Informatics & Decision Making 5, 22 (2005)CrossRefGoogle Scholar
  9. 9.
    Zhang, M., Wallstrom, G.L.: Template Driven Spatial Temporal Outbreak Simulation for Detection Algorithm Evaluation. In: AMIA Annual Symposium Proceedings/AMIA Symposium 2008 (in press, 2008)Google Scholar
  10. 10.
    Tsui, F.C., et al.: Technical description of RODS: a real-time public health surveillance system. Journal of the American Medical Informatics Association 10(5), 399–408 (2003)CrossRefGoogle Scholar
  11. 11.
    Wagner, M.M., et al.: Design of a national retail data monitor for public health surveillance. Journal of the American Medical Informatics Association 10(5), 409–418 (2003)CrossRefGoogle Scholar
  12. 12.
    Gilchrist, M.J.: A national laboratory network for bioterrorism: evolution from a prototype network of laboratories performing routine surveillance. Military Medicine 165(7 Suppl. 2), 28–31 (2000)Google Scholar
  13. 13.
    Hutwagner, L.C., et al.: Using laboratory-based surveillance data for prevention: an algorithm for detecting Salmonella outbreaks. Emerging Infectious Diseases 3(3), 395–400 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Min Zhang
    • 1
  • Xiaohui Kong
    • 1
  • Garrick L. Wallstrom
    • 1
  1. 1.Department of Biomedical InformaticsUniversity of PittsburghPittsburghUSA

Personalised recommendations