Advertisement

Assessing the Accuracy of Spatiotemporal Epidemiological Models

  • James H. Kaufman
  • Joanna L. Conant
  • Daniel A. Ford
  • Wakana Kirihata
  • Barbara Jones
  • Judith V. Douglas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5354)

Abstract

To demonstrate an approach that allows for the assessment of models and their accuracy, a numerical experiment was designed to generate a “control” data set and treated it as if it were “real” data. The open source spatiotemporal epidemiological modeler (STEM) was used to develop a control scenario depicting the spread of influenza in the state of Vermont; this scenario was then compared to three alternative models using such tools as root mean square differences and phase space analysis. This approach may prove helpful in responding to global pandemics and arriving at necessary policy decisions.

Keywords

Spatiotemporal data analysis Infectious disease spread Epidemiological models Assessment Validation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hethcote, H.W.: The Mathematics of Infectious Diseases. SIAM Rev. 42, 599–653 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bailey, N.T.: The Mathematical Theory of Infectious Diseases, 2nd edn. Charles Griffin and Co. Ltd., London (1975)zbMATHGoogle Scholar
  3. 3.
    Anderson, R.M., May, R.M.: Infectious Diseases of Humans. Oxford University Press, Oxford (1992)Google Scholar
  4. 4.
    Widgren, S.: Graph Theory in Veterinary Epidemiology – Modelling an Outbreak of Classical Swine Fever. Thesis, Institution for Ruminant Medicine and Veterinary Epidemiology, Swedish University of Agricultural Sciences, Uppsala, Sweden (2004)Google Scholar
  5. 5.
    Myers, L.A., Newman, M.E.J., Martin, M., Schrag, S.: Applying Network Theory to Epidemics: Control Measures for Mycoplasma Pneumonia Outbreaks. Emerg. Infect. Dis. (2003), http://www.cdc.gov/ncidod/EID/vol9no2/02-0188.htm
  6. 6.
    Ford, D.A., Kaufman, J.H., Eiron, I.: An Extensible Spatial and Temporal Epidemiological Modeling System. Int. J. Health Geogr. 5(4) (2006), http://www.ij-healthgeographics.com/content/5/1/4, http://www.eclipse.org/ohf/components/stem/
  7. 7.
    The Eclipse Foundation, http://www.eclipse.org/org/
  8. 8.
    Schaffer, W.M., Bronnikova, T.V.: Parametric Dependence in Model Epidemics. J. Biol. Dynam. 1, 183–195 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Olsen, L.F., Schaffer, W.M.: Chaos vs. Noisy Periodicity: Alternative Hypotheses for Childhood Epidemics. Science 249, 499–504 (1990)CrossRefGoogle Scholar
  10. 10.
    Ohkusa, Y., Sugawara, T.: Application of an Individual-Based Model with Real Data for Transportation Mode and Location to Pandemic Influenza. J. Infect. Chemother. 13(6), 280–389 (2007)CrossRefGoogle Scholar
  11. 11.
    Kuznetsov, Y., Piccardi, C.: Bifurcation Analysis of Periodic SEIR and SIR Epidemic Models. J. Math. Biol. 32, 109–121 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Li, M.Y., Muldowney, J.: Global Stability for the SEIR Model in Epidemiology. Math. Biosci. 125, 155–164 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Zhang, G., Liu, Z., Maa, Z.: Generalized Synchronization of Different Dimensional Chaotic Dynamical Systems. Chaos, Solitons & Fractals 32(2), 773–779 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wilbur Smith Associates: Northeast CanAm Connections – Integrating the Economy and Transportation. Task force report (2007)Google Scholar
  15. 15.
    Vermont Agency of Transportation, Policy and Planning Division, Traffic Research Unit: Continuous Traffic Counter Grouping Study and Regression Analysis Based on 2007 Traffic Data (2008)Google Scholar
  16. 16.
    Wearing, H.J., Rohani, P., Keeling, M.J.: Appropriate Models for the Management of Infectious Diseases. PLoS Med. 2,7, 621 (2005)Google Scholar
  17. 17.
    Bootsma, M.C.J., Ferguson, N.M.: The Effect of Public Health Measures on the 1918 Influenza Pandemic in U.S. Cities. PNAS 104, 18 (2007)CrossRefGoogle Scholar
  18. 18.
    Arino, J., Frauer, F., van den Driessche, P., Watmough, J., Wu, J.: A Model for Influenza with Vaccination and Antiviral Treatment. J. Theor. Bio. 253(1), 118–130 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • James H. Kaufman
    • 1
  • Joanna L. Conant
    • 2
  • Daniel A. Ford
    • 1
  • Wakana Kirihata
    • 3
  • Barbara Jones
    • 1
  • Judith V. Douglas
    • 1
  1. 1.Healthcare Informatics Research, IBM Almaden Research CenterSan JoseUnited States of America
  2. 2.College of MedicineUniversity of VermontVermontUnited States of America
  3. 3.Wakana Kirihata, Columbia UniversityNew YorkUnited States of America

Personalised recommendations