Advertisement

Test Power for Drug Abuse Surveillance

  • Jarad Niemi
  • Meredith Smith
  • David Banks
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5354)

Abstract

Syndromic surveillance can be used to assess change in drug abuse rates and to find regions in which abuse is most common. This paper compares the power of three syndromic surveillance procedures (a paired-sample test, a process control chart, and a conditional autoregressive model) for detecting change in opioid drug abuse patterns, using data from two reporting systems (the OTP and PCC datasets). We find that the conditional autoregressive model provides good power and geographic information and that the OTP data carry the strongest signal.

Keywords

Control Chart Power Curve Syndromic Surveillance Opioid Abuse CUSUM Chart 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birnbaum, H.G., White, A.G., Reynolds, J.L., Greenberg, P., Mingliang, Z., Vallow, S., Schein, J., Katz, N.P.: Estimated costs of prescription opioid analgesic abuse in the United States in 2001: A societal perspective. Clinical Journal of Pain 22, 667–676 (2006)CrossRefGoogle Scholar
  2. 2.
    Carise, D., Dugosh, K., McLellan, A.T., Camilleri, A., Woody, G., Lynch, K.G.: Prescription OxyContin abuse among patients entering addiction treatment. American Journal of Psychiatry 164, 1750–1756 (2007)CrossRefGoogle Scholar
  3. 3.
    Cicero, T.J., Inciardi, J.A., Munoz, A.: Trends in the abuse of OxyContin and other opioid analgesics in the United States: 2002-2004. Journal of Pain 6, 662–672 (2005)CrossRefGoogle Scholar
  4. 4.
    Compton, W.M., Volkow, N.D.: Major increases in opioid analgesic abuse in the United States: Concerns and strategies. Drug and Alcohol Dependency 81, 103–107 (2006)CrossRefGoogle Scholar
  5. 5.
    Efron, B.: Bootstrap methods: Another look at the jackknife. Annals of Statistics 7, 1–26 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fisher, R.: Combining independent tests of significance. The American Statistician 2, 30 (1948)Google Scholar
  7. 7.
    McCullagh, P., Nelder, J.: Generalized Linear Models. Chapman and Hall, London (1989)CrossRefzbMATHGoogle Scholar
  8. 8.
    Montgomery, D.: Introduction to Statistical Quality Control. John Wiley & Sons, Inc., New York (2001)zbMATHGoogle Scholar
  9. 9.
    Rolka, H., Burkom, H., Cooper, G.F., Kulldorff, M., Madigan, D., Wong, W.-K.: Issues in applied statistics for public health bioterrorism surveillance using multiple data streams: Research needs. Statistics in Medicine 26, 1834–1856 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Waller, L.A., Carlin, B.P., Xia, H., Gelfand, A.: Hierarchical spatio-temporal mapping of disease rates. Journal of the American Statistical Association 92, 607–617 (1997)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jarad Niemi
    • 1
  • Meredith Smith
    • 2
  • David Banks
    • 1
  1. 1.Duke UniversityDurhamUSA
  2. 2.Purdue Pharma L.P., (now at Abbot Laboratories, Abbot Park, IL 60064 USA)StamfordUSA

Personalised recommendations