Epidemic Thresholds in SIR and SIIR Models Applying an Algorithmic Method

  • Doracelly Hincapié P.
  • Juan Ospina G.
  • Anthony Uyi Afuwape
  • Ruben D. Gómez A.
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5354)


Epidemic thresholds were deduced and simulated from SIR models of Susceptible – Infected – Recovered individuals, through local stability analysis of the disease free and endemic equilibrium, with an algorithmic method. One and two types of infected individuals were modeled, considering the influence of sub clinical, undiagnosed or unrecognized infected cases in disease transmission.


Mathematical model basic reproduction number 


  1. 1.
    Brown, C., El Kahoui, M., Novotni, D., Weber, A.: Algorithmic methods for investigating equilibria in epidemic modelling. Journ. Symb. Comp. 41, 1157–1163 (2006)CrossRefzbMATHGoogle Scholar
  2. 2.
    Anderson, R.M., May, R.M.: Infectious diseases of humans: dynamics and control. Oxford University Press, New York (1992)Google Scholar
  3. 3.
    Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. John Wiley and Sons, New York (2000)zbMATHGoogle Scholar
  4. 4.
    Chowell, G., Hengartner, N.W., Castillo-Chavez, C., Fenimore, P.W., Hyman, J.M.: The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda. Journal of Theoretical Biology 229(1), 119–126 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hsua, S.-B., Hsiehb, Y.-H.: On the Role of Asymptomatic Infection in Transmission Dynamics of Infectious Diseases. Bulletin of Mathematical Biology 70, 134–155 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ball, F., Becker, N.: Control of transmission with two types of infection. Mathematical Biosciences 200, 170–187 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Águas, R., Gonçalves, G., Gabriela, M., Gomes, M.: Pertussis: increasing disease as a consequence of reducing Transmisión. Lancet Infect. Dis. 6, 112–117 (2006)CrossRefGoogle Scholar
  8. 8.
    Bailey, N.T.J.: The mathematical theory of epidemics, p. 194. Charles Griffin and company limited, London (1957)Google Scholar
  9. 9.
    Panamerican Health Organization. Health conditions and trends. Health in the Americas, edn. Washington, DC, pp. 58–207 (2007)Google Scholar
  10. 10.
    Ospina, J., Hincapie, D.: Mackendrick: A Maple Package Oriented to Symbolic Computational Epidemiology. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3991, pp. 920–923. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Glass, K., Grenfell, B.T.: Waning immunity and subclinical measles infections in England. Vaccine 22, 4110–4116 (2004)CrossRefGoogle Scholar
  12. 12.
    Glass, K., Grenfell, B.T.: Antibody Dynamics in Childhood Diseases: Waning and Boosting of Immunity and the Impact of Vaccination. J. theor. Biol. 221, 21–131 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Van Boven, M., Melker, H., Schellekens, J., Kretzschmar, M.: Waning immunity and sub-clinical infection in an epidemic model: implications for pertussis in The Netherlands. Mathematical Biosciences 164, 161–182 (2000)CrossRefzbMATHGoogle Scholar
  14. 14.
    Eames, K., Keeling, M.: Contact tracing and disease control. Proc. R. Soc. Lond. B 270, 2565–2571 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Doracelly Hincapié P.
    • 1
  • Juan Ospina G.
    • 2
  • Anthony Uyi Afuwape
    • 3
  • Ruben D. Gómez A.
    • 1
  1. 1.Grupo de EpidemiologíaFacultad Nacional de Salud Pública Universidad de AntioquiaColombia
  2. 2.Grupo de Lógica y ComputaciónUniversidad EAFITColombia
  3. 3.Grupo de Modelamiento en Ecuaciones DiferencialesUniversidad de AntioquiaColombia

Personalised recommendations