A PSO Based Adaboost Approach to Object Detection

  • Ammar W. Mohemmed
  • Mengjie Zhang
  • Mark Johnston
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5361)


This paper describes a new approach using particle swarm optimisation (PSO) within AdaBoost for object detection. Instead of using the time consuming exhaustive search for finding good features to be used for constructing weak classifiers in AdaBoost, we propose two PSO based methods in this paper. The first uses PSO to evolve and select the good features only and the weak classifiers use a kind of decision stump. The second uses PSO for both selecting the good features and evolving weak classifiers in parallel. These two methods are examined and compared on a pasta detection data set. The experiment results show that both approaches perform quite well for the pasta detection problem, and that using PSO for selecting good individual features and evolving associated weak classifiers in AdaBoost is more effective than for selecting features only for this problem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: A survey and categorisation. Journal of Information Fusion (Special issue on Diversity in Multiple Classifer Systems) 6, 5–20 (2005)Google Scholar
  2. 2.
    Valentini, G., Masulli, F.: Ensembles of learning machines. In: Plaice, J., Kropf, P.G., Schulthess, P., Slonim, J. (eds.) DCW 2002. LNCS, vol. 2468, pp. 3–20. Springer, Heidelberg (2002)Google Scholar
  3. 3.
    Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. Neural Information Processing Systems 7, 231–238 (1995)Google Scholar
  4. 4.
    Opitz, D., Maclin, R.: Popular ensemble methods: An empirical study. Journal of Artifcial Intelligence Research 11, 169–198 (1999)zbMATHGoogle Scholar
  5. 5.
    Ji, C., Ma, S.: Combinations of weak classifiers. IEEE Transactions on Neural Networks 8, 32–42 (1997)CrossRefGoogle Scholar
  6. 6.
    Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)zbMATHGoogle Scholar
  7. 7.
    Valiant, L.: A theory of the learnable. Communications of the ACM 27(11), 1134–1142 (1984)CrossRefzbMATHGoogle Scholar
  8. 8.
    Kearns, M.J., Valiant, L.G.: Cryptographic limitations on learning boolean formulae and finite automata. Journal of ACM 1, 67–95 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kearns, M.J., Valiant, L.G.: The boosting approach to machine learning: An overview. In: Nonlinear Estimation and Classification. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 511–518 (December 2001)Google Scholar
  12. 12.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Neural Networks, pp. 1942–1948 (1995)Google Scholar
  13. 13.
    Bargeron, D., Viola, P., Simard, P.: Boosting-based transductive learning for text detection. In: Eighth International Conference on Document Analysis and Recognition, vol. 2, pp. 1166–1171 (2005)Google Scholar
  14. 14.
    Bradski, G., Kaehler, A., Pisarevsky, V.: Learning-based computer vision with intel’s open source computer vision library. Intel Technology Journal 09(1), 119–130 (2005)Google Scholar
  15. 15.
    Sierra, A., Echeverria, A.: Evolutionary discriminant analysis. IEEE Transactions on Evolutionary Computation 10(1), 81–92 (2006)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Cagnoni, S., Mordonini, M., Sartori, J.: Particle swarm optimization for object detection and segmentation. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 241–250. Springer, Heidelberg (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ammar W. Mohemmed
    • 1
  • Mengjie Zhang
    • 1
  • Mark Johnston
    • 1
  1. 1.School of Mathematics, Statistics and Computer ScienceVictoria University of WellingtonWellingtonNew Zealand

Personalised recommendations