Hybrid Genetic Programming for Optimal Approximation of High Order and Sparse Linear Systems

  • Jing Liu
  • Wenlong Fu
  • Weicai Zhong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5361)


A Hybrid Genetic Programming (HGP) algorithm is proposed for optimal approximation of high order and sparse linear systems. With the intrinsic property of linear systems in mind, an individual in HGP is designed as an organization that consists of two cells. The nodes of the cells include a function and a terminal. All GP operators are designed based on organizations. In the experiments, three kinds of linear system approximation problems, namely stable, unstable, and high order and sparse linear systems, are used to test the performance of HGP. The experimental results show that HGP obtained a good performance in solving high order and sparse linear systems.


Optimal Approximation Gene Expression Programming Approximate Model Differential Evolution Algorithm Sparse Linear System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hollabd, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Application to Biology, Control, and Artificial Intelligence, 2nd edn. MIT Press, Cambridge (1992)Google Scholar
  2. 2.
    Koza, J. R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  3. 3.
    Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Generic Programming: An Introduction on the Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann, San Francisco (1998)zbMATHGoogle Scholar
  4. 4.
    Oltean, M.: Multi-expression Programming, Technical Report, Babes-Bolyai Univ, Romania (2006)Google Scholar
  5. 5.
    Ferreira, C.: Gene Expression Programming: A New Adaptive Algorithm for Solving Problems. Complex Systems 13, 19–87 (2001)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Miller, J.F., Job, D., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 131–132. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Fortuna, L., Nunnari, G., Gallo, A.: Model Order Reduction with Applications in Electrical Engineering. Springer, London (1992)CrossRefGoogle Scholar
  8. 8.
    Zhong, W., Liu, J., Xue, M., Jiao, L.: A multiagent genetic algorithm for global numerical optimization. IEEE Trans. System, Man, and Cybernetics—Part B 34(2), 1128–1141 (2004)CrossRefGoogle Scholar
  9. 9.
    Cheng, S., Hwang, C.: Optimal approximation of linear systems by a differential evolution algorithm. IEEE Trans. Syst., Man, Cyber. A 31(6), 698–707 (2001)CrossRefGoogle Scholar
  10. 10.
    Guo, T.Y., Hwang, C.: Optimal reduced-order models for unstable and nonminimum-phase systems. IEEE Trans. Circuits and Systems I 43(9), 800–805 (1996)CrossRefGoogle Scholar
  11. 11.
    Liu, J., Zhong, W., Jiao, L.: An organizational evolutionary algorithm for numerical optimization. IEEE Trans. System, Man, and Cybernetics—Part B 37(4), 1052–1064 (2007)CrossRefGoogle Scholar
  12. 12.
    Wang, G., Soule, T.: How to Choose Appropriate Function Sets for Genetic Programming. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 198–207. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jing Liu
    • 1
  • Wenlong Fu
    • 1
  • Weicai Zhong
    • 1
  1. 1.Institute of Intelligent Information ProcessingXidian University Email: neouma@163.comXi’anChina

Personalised recommendations