Advertisement

Attributes of Dynamic Combinatorial Optimisation

  • Philipp Rohlfshagen
  • Xin Yao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5361)

Abstract

The field of evolutionary computation has traditionally focused on static optimisation problems but recently, many new approaches have been proposed that adapt traditional evolutionary algorithms to deal with the task of tracking high-quality solutions as the search space changes over time. Algorithms developed specifically for dynamic domains have been tested on a wide range of different problems, including well-specified benchmark generators. However, the lack of theoretical results, a general omission of references to actual real-world scenarios, as well as a substantial emphasis on the continuous domain may divert attention away from some highly relevant issues. Here we review the state of the field and analyse dynamics in the combinatorial domain, using the subset sum problem as an example. It is shown that some of the assumptions underlying the development of new algorithms do not necessarily hold in the case of discrete optimisation. Furthermore, it is argued that more attention should be paid to the underlying dynamics and the impact of the representation used.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer, Dordrecht (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Morrison, R.W.: Designing Evolutionary Algorithms for Dynamic Environments. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Weicker, K.: Evolutionary algorithms and dynamic optimization problems. Der Andere Verlag (2003)Google Scholar
  4. 4.
    Yang, S., Ong, Y.S., Jin, Y. (eds.): Evolutionary Computation in Dynamic and Uncertain Environments. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  5. 5.
    Yang, S.: Non-stationary problem optimization using the primal-dual genetic algorithms. In: Sarker, R., Reynolds, R., Abbass, H., Tan, K.C., McKay, R., Essam, D., Gedeon, T. (eds.) Proceedings of the 2003 IEEE Congress on Evolutionary Computation, vol. 3, pp. 2246–2253 (2003)Google Scholar
  6. 6.
    Ursem, R.K., Krink, T., Jensen, M.T., Michalewicz, Z.: Analysis and modeling of control tasks in dynamic systems. IEEE Transactions on Evolutionary Computation 6(4), 378–389 (2002)CrossRefGoogle Scholar
  7. 7.
    Branke, J., Salihoglu, E., Uyar, S.: Towards an analysis of dynamic environments. In: Beyer, H.G., et al. (eds.) Genetic and Evolutionary Computation Conference, pp. 1433–1439. ACM, New York (2005)Google Scholar
  8. 8.
    Branke, J., Orbayi, M., Uyar, S.: The role of representations in dynamic knapsack problem. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 764–775. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Bosman, P.A.N., Poutrè, H.L.: Learning and anticipation in online dynamic optimization with evolutionary algorithms: the stochastic case. In: Proceedings of the 2007 Genetic and Evolutionary Computation Conference, pp. 1165–1172 (2007)Google Scholar
  10. 10.
    Rossi, C., Barrientos, A., del Cerro, J.: Two adaptive mutation operators for optima tracking in dynamic optimization problems with evolution strategies. In: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pp. 697–704 (2007)Google Scholar
  11. 11.
    Jin, Y., Branke, J.: Evolutionary optimization in uncertain environment - a survey. IEEE Transactions on Evolutionary Computation 9(3), 303–317 (2005)CrossRefGoogle Scholar
  12. 12.
    Branke, J.: Evolutionary approaches to dynamic environments - updated survey. In: GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems, pp. 27–30 (2001)Google Scholar
  13. 13.
    Morrison, R.W., DeJong, K.A.: A test problem generator for non-stationary environments. In: Congress on Evolutionary Computation, vol. 3, pp. 2047–2053. IEEE, Los Alamitos (1999)Google Scholar
  14. 14.
    Merz, P.: Advanced fitness landscape analysis and the performance of memetic algorithms. Evolutionary Computation 12(3), 303–325 (2004)CrossRefGoogle Scholar
  15. 15.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  16. 16.
    Wolpert, D.H., MacReady, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)CrossRefGoogle Scholar
  17. 17.
    Rothlauf, F.: Representations for genetic and evolutionary algorithms. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  18. 18.
    Goldberg, D.E., Smith, R.E.: Nonstationary function optimization using genetic algorithms with dominance and diploidy. In: Grefenstette, J.J. (ed.) Second International Conference on Genetic Algorithms, pp. 59–68. Lawrence Erlbaum Associates, Mahwah (1987)Google Scholar
  19. 19.
    Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems. In: Proceedings of the 1999 IEEE Congress on Evolutionary Computation, vol. 3, pp. 1875–1882. IEEE, Los Alamitos (1999)Google Scholar
  20. 20.
    Yamasaki, K., Sekiguchi, K.K.M.: Dynamic optimization by evolutionary algorithms applied to financial time series. In: Proceedings of the 2002 Congress on Evolutionary Computation (2002)Google Scholar
  21. 21.
    Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 184–192 (1995)Google Scholar
  22. 22.
    Wong, R.L.: A genetic algorithm for subset sum problem. Neurocomputing 57, 463–468 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Philipp Rohlfshagen
    • 1
  • Xin Yao
    • 1
  1. 1.The Centre of Excellence for Research in Computational Intelligence and Applications (CERCIA) School of Computer ScienceUniversity of BirminghamBirminghamUnited Kingdom

Personalised recommendations