Advertisement

Robust Optimization by ε-Ranking on High Dimensional Objective Spaces

  • Hernán Aguirre
  • Kiyoshi Tanaka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5361)

Abstract

This work proposes a method to fine grain the ranking of solutions after they have been ranked by Pareto dominance, aiming to improve the performance of evolutionary algorithms on many objectives optimization problems. The re-ranking method uses a randomized sampling procedure to choose, from sets of equally ranked solutions, those solutions that will be given selective advantage. The sampling procedure favors a good distribution of the sampled solutions based on dominance regions wider than conventional Pareto dominance. We enhance NSGA-II with the proposed method and test its performance on MNK-Landscapes with up to M = 10 objectives. Experimental results show that convergence and diversity of the solutions found can improve remarkably on 3 ≤ M ≤ 10 objectives problems.

Keywords

Multiobjective Optimization Pareto Optimal Solution Epistatic Interaction Objective Space Robust Optimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)zbMATHGoogle Scholar
  2. 2.
    Coello, C., Van Veldhuizen, D., Lamont, G.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, Boston (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Aguirre, H., Tanaka, K.: Insights on Properties of Multiobjective MNK-Landscapes. In: Proc. 2004 IEEE Congress on Evolutionary Computation, pp. 196–203. IEEE Service Center (2004)Google Scholar
  4. 4.
    Aguirre, H., Tanaka, K.: Working Principles, Behavior, and Performance of MOEAs on MNK-Landscapes. European Journal of Operational Research 181(3), 1670–1690 (2007)CrossRefzbMATHGoogle Scholar
  5. 5.
    Purshouse, R.C., Fleming, P.J.: Conflict, Harmony, and Independence: Relationships in Evolutionary Multi-criterion Optimisation. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 16–30. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Aguirre, H., Tanaka, K.: Selection, Drift, Recombination, and Mutation in Multiobjective Evolutionary Algorithms on Scalable MNK-Landscapes. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 355–369. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Hughes, E.J.: Evolutionary Many-Objective Optimisation: Many Once or One Many? In: Proc. 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 222–227. IEEE Service Center (September 2005)Google Scholar
  8. 8.
    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II, KanGAL report 200001 (2000)Google Scholar
  9. 9.
    Yu, P.L.: Cone Convexity, Cone Extreme Points, and Nondominated Solutions in Decision Problems with Multiobjectives. Journal of Optimization Theory and Applications 14(3), 319–377 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining Convergence and Diversity in Evolutionary Multi-objective Optimization. Evolutionary Computation 10(3), 263–282 (Fall 2002)CrossRefGoogle Scholar
  11. 11.
    Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, Oxford (1993)Google Scholar
  12. 12.
    Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications, PhD thesis, Swiss Federal Institute of Technology, Zurich (1999)Google Scholar
  13. 13.
    Fonseca, C., Paquete, L., López-Ibáñez, M.: An Improved Dimension-sweep Algorithm for the Hypervolume Indicator. In: Proc. 2006 IEEE Congress on Evolutionary Computation, pp. 1157–1163. IEEE Service Center (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hernán Aguirre
    • 1
    • 2
  • Kiyoshi Tanaka
    • 2
  1. 1.Fiber-Nanotech Young Researcher Empowerment ProgramJapan
  2. 2.Faculty of EngineeringShinshu UniversityNaganoJapan

Personalised recommendations