Advertisement

Information Theoretic Classification of Problems for Metaheuristics

  • Kent C. B. Steer
  • Andrew Wirth
  • Saman K. Halgamuge
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5361)

Abstract

This paper proposes a model for metaheuristic research which recognises the need to match algorithms to problems. An empirical approach to producing a mapping from problems to algorithms is presented. This mapping, if successful, will encapsulate the knowledge gained from the application of metaheuristics to the spectrum of real problems. Information theoretic measures are suggested as a means of associating a dominant algorithm with a set of problems.

Keywords

Metaheuristics information theory optimisation problem classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borenstein, Y., Poli, R.: Information Perspective of Optimization. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 102–111. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Dréo, J., Pétrowski, A., Siarry, P., Taillard, E.: Metaheuristics for Hard Optimization: Methods and Case Studies. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  3. 3.
    Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Information characteristics and the structure of landscapes. Evolutionary Computation 8, 31–60 (2000)CrossRefGoogle Scholar
  4. 4.
    Koehler, G.J.: Conditions that obviate the no-free-lunch theorems for optimization. Informs Journal on Computing 19, 273–279 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Igel, C., Toussaint, M.: On classes of functions for which no free lunch results hold. Inf. Process. Lett. 86, 317–321 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Wolpert, D.H., MacReady, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1, 67–82 (1997)CrossRefGoogle Scholar
  7. 7.
    Aytug, H., Bhattacharyya, S., Koehler, G., Snowdon, J.: A review of machine learning in scheduling. IEEE Transactions on Engineering Management 41, 165–171 (1994)CrossRefGoogle Scholar
  8. 8.
    Ho, Y.C., Pepyne, D.L.: Simple explanation of the no-free-lunch theorem and its implications. Journal of Optimization Theory and Applications 115, 549–570 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Wright, S.: Evolution in mendelian populations. Bulletin of Mathematical Biology 52, 241–295 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Kent C. B. Steer
    • 1
  • Andrew Wirth
    • 1
  • Saman K. Halgamuge
    • 1
  1. 1.The University of MelbourneParkvilleAustralia

Personalised recommendations