Advertisement

Choosing Leaders for Multi-objective PSO Algorithms Using Differential Evolution

  • Upali Wickramasinghe
  • Xiaodong Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5361)

Abstract

The fast convergence of particle swarm algorithms can become a downside in multi-objective optimization problems when there are many local optimal fronts. In such a situation a multi-objective particle swarm algorithm may get stuck to a local Pareto optimal front. In this paper we propose a new approach in selecting leaders for the particles to follow, which in-turn will guide the algorithm towards the Pareto optimal front. The proposed algorithm uses a Differential Evolution operator to create the leaders. These leaders can successfully guide the other particles towards the Pareto optimal front for various types of test problems. This simple yet robust algorithm is effective compared with existing multi-objective particle swarm algorithms.

Keywords

Hybrid Particle Swarm Differential Evolution Multi-objective optimization Multi-modal problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reyes-Sierra, M., Coello Coello, C.A.: Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art. International Journal of Computational Intelligence Research 2, 287–308 (2006)MathSciNetGoogle Scholar
  2. 2.
    Kennedy, J., Eberhart, R.C.: Swarm intelligence. Morgan Kaufmann Publishers Inc., San Francisco (2001)Google Scholar
  3. 3.
    Li, X.: A non-dominated sorting particle swarm optimizer for multiobjective optimization. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 37–48. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Li, X.: Better spread and convergence: Particle swarm multiobjective optimization using the maximin fitness function. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 117–128. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Natural Computing Series. Springer, Secaucus (2005)zbMATHGoogle Scholar
  6. 6.
    Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6, 58–73 (2002)CrossRefGoogle Scholar
  7. 7.
    Abbass, H., Sarker, R., Newton, C.: PDE: a pareto-frontier differential evolution approach for multi-objective optimization problems. IEEE Congress on Evolutionary Computation (CEC) 2, 971–978 (2001)Google Scholar
  8. 8.
    Huang, V.L., Suganthan, P.N., Qin, A.K., Baskar, S.: Multiobjective differential evolution with external archive and harmonic distance-based diversity measure. In: School of Electrical and Electronic Engineering Nanyang, Technological University Technical Report (2005)Google Scholar
  9. 9.
    Kukkonen, S., Lampinen, J.: GDE3: the third evolution step of generalized differential evolution. In: IEEE Congress on Evolutionary Computation (CEC), pp. 443–450 (2005)Google Scholar
  10. 10.
    Robic, T., Filipic, B.: Demo: Differential evolution for multiobjective optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 520–533. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Hu, X., Eberhart, R., Shi, Y.: Particle swarm with extended memory for multiobjective optimization. In: IEEE Swarm Intelligence Symposium (SIS), pp. 193–197 (2003)Google Scholar
  12. 12.
    Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)CrossRefGoogle Scholar
  13. 13.
    Balling, R.: The maximin fitness function; multi-objective city and regional planning. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 1–15. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Fieldsend, J., Everson, R., Singh, S.: Using unconstrained elite archives for multiobjective optimization. IEEE Transactions on Evolutionary Computation 7, 305–323 (2003)CrossRefGoogle Scholar
  15. 15.
    Reyes-Sierra, M., Coello Coello, C.A.: Improving pso-based multi-objective optimization using crowding, mutation and epsilon-dominance. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Mostaghim, S., Teich, J.: Strategies for finding good local guides in multi-objective particle swarm optimization. In: IEEE Swarm Intelligence Symposium (SIS), pp. 26–33 (2003)Google Scholar
  17. 17.
    Allmendinger, R.: Reference point-based particle swarm optimization using a steady-state approach: Master’s thesis (2008)Google Scholar
  18. 18.
    Hendtlass, T.: A combined swarm differential evolution algorithm for optimization problems. In: Monostori, L., Váncza, J., Ali, M. (eds.) IEA/AIE 2001. LNCS, vol. 2070, pp. 11–18. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Zhang, W.J., Xie, X.F.: DEPSO: Hybrid particle swarm with differential evolution operator. In: IEEE International Conference on Machine Learning and Cybernetics (ICMLC), pp. 3816–3821 (2003)Google Scholar
  20. 20.
    Hao, Z.F., Guo, G.H., Huang, H.: A particle swarm optimization algorithm with differential evolution. IEEE International Conference on Machine Learning and Cybernetics (ICMLC) 2, 1031–1035 (2007)Google Scholar
  21. 21.
    Xu, X., Li, Y., Fang, S., Wu, Y., Wang, F.: A novel differential evolution scheme combined with particle swarm intelligence. In: IEEE Congress on Evolutionary Computation, CEC (2008)Google Scholar
  22. 22.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8, 173–195 (2000)CrossRefGoogle Scholar
  23. 23.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multi-objective optimization. In: Evolutionary Multiobjective Optimization (EMO): Theoretical Advances and Applications, pp. 105–145. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Huband, S., Hingston, P., Barone, L., While, R.L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation 10, 477–506 (2006)CrossRefzbMATHGoogle Scholar
  25. 25.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation 3, 257–271 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Upali Wickramasinghe
    • 1
  • Xiaodong Li
    • 1
  1. 1.School of Computer Science and Information TechnologyRMIT UniversityMelbourneAustralia

Personalised recommendations