Extremal Optimisation with a Penalty Approach for the Multidimensional Knapsack Problem

  • Pedro Gómez-Meneses
  • Marcus Randall
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5361)


The extremal optimisation (EO) meta-heuristic is a recent form of search that is suitable for combinatorial optimisation problems. EO has been applied to problems such as graph partitioning, spin glass, and graph colouring. However, only a relatively small amount of work has been done on other combinatorial problems particularly those having constraints. This paper examines the issue of satisfying constraints with a penalty approach using the multidimensional knapsack problem. An EO model is presented which finds solutions through the analysis of the number of overloaded constraints. This approach allows the solution state move between feasible and infeasible spaces. The results show that the new algorithm is able to obtain optimal results for small problems and finds competitive solutions for large problems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boettcher, S., Percus, A.: Evolutionary strategies for extremal optimization: Methods derived from co-evolution. In: Proceedings of GECCO 1999 (1999)Google Scholar
  2. 2.
    Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: An explanation of the 1/f noise. Physical Review Letters 59(4), 381–384 (1987)CrossRefGoogle Scholar
  3. 3.
    Bak, P., Sneppen, K.: Punctuated equilibrium and criticality in a simple model of evolution. Physical Review Letters 71(24), 4083–4086 (1993)CrossRefGoogle Scholar
  4. 4.
    Boettcher, S.: Extremal optimization for Sherrington-Kirkpatrick spin glasses. The European Physical Journal B 46, 501–505 (2005)CrossRefGoogle Scholar
  5. 5.
    Boettcher, S., Percus, A.: Extremal optimization: An evolutionary local-search algorithm. In: 8th INFORMS Computer Society Conference (2003)Google Scholar
  6. 6.
    Randall, M., Lewis, A.: An extended extremal optimisation model for parallel architectures. In: 2nd International Conference on e-Science and Grid Computing (2006)Google Scholar
  7. 7.
    Menaï, M.E., Batouche, M.: An effective heuristic algorithm for the maximum satisfiability problem. Applied Intelligence 24(3), 227–239 (2006)CrossRefGoogle Scholar
  8. 8.
    Randall, M.: Enhancements to extremal optimisation for generalised assignment. In: Randall, M., Abbass, H.A., Wiles, J. (eds.) ACAL 2007. LNCS, vol. 4828, pp. 369–380. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Hendtlass, T., Moser, I., Randall, M.: Dynamic problems and nature inspired meta-heuristics. In: 2nd IEEE International Conference on e-Science and Grid Computing (2006)Google Scholar
  10. 10.
    Chen, M.R., Lu, Y.Z., Luo, Q.: A novel hybrid algorithm with marriage of particle swarm optimization and extremal optimization. Optimization Online (2007)Google Scholar
  11. 11.
    Chen, Y.W., Lu, Y.Z., Yang, G.K.: Hybrid evolutionary algorithm with marriage of genetic algorithm and extremal optimization for production scheduling. International Journal of Advanced Manufacturing Technology (2007)Google Scholar
  12. 12.
    Chu, P., Beasley, J.: A genetic algorithm for the multidimensional knapsack problem. Journal of Heuristics 4(1), 63–86 (1998)CrossRefzbMATHGoogle Scholar
  13. 13.
    Gottlieb, J.: Permutation-based evolutionary algorithms for multidimensional knapsack problems. In: 2000 ACM symposium on applied computing, pp. 408–414 (2000)Google Scholar
  14. 14.
    Raidl, G.R.: An improved genetic algorithm for the multiconstrained 0-1 knapsack problem (1998)Google Scholar
  15. 15.
    Vasquez, M., Hao, J.: A hybrid approach for the 0-1 multidimensional knapsack problem. In: International Joint Conference on Artif. Intell., pp. 328–333 (2001)Google Scholar
  16. 16.
    Beasley, J.E.: OR-library: Distributing test problems by electronic mail. Journal of the Operational Research Society 41(11), 1069–1072 (1990)CrossRefGoogle Scholar
  17. 17.
    Bak, P.: How nature works. Springer, New York (1996)CrossRefzbMATHGoogle Scholar
  18. 18.
    Boettcher, S.: Extremal optimization: Heuristics via co-evolutionary avalanches. Computing in Science and Engineering 2, 75–82 (2000)CrossRefGoogle Scholar
  19. 19.
    Barbosa, H.J.C., Lemonge, A.C.C.: A new adaptive penalty scheme for genetic algorithms. Information Sciences 156(3-4), 215–251 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Amsterdam (1989)zbMATHGoogle Scholar
  21. 21.
    Uyar, S., Eryiğit, G.: Improvements to penalty-based evolutionary algorithms for the multi-dimensional knapsack problem using a gene-based adaptive mutation approach. In: Proceedings of GECCO 2005, pp. 1257–1264 (2005)Google Scholar
  22. 22.
    Vimont, Y., Boussier, S., Vasquez, M.: Reduced costs propagation in an efficient implicit enumeration for the 0-1 multidimensional knapsack problem. Journal of Combinatorial Optimization 15(2), 165–178 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Pedro Gómez-Meneses
    • 1
    • 2
  • Marcus Randall
    • 1
  1. 1.School of Information TechnologyBond UniversityAustralia
  2. 2.Universidad Católica de la Santísima ConcepciónConcepciónChile

Personalised recommendations