Advertisement

A Particle Swarm Optimization Based Algorithm for Fuzzy Bilevel Decision Making with Objective-Shared Followers

  • Ya Gao
  • Guangquan Zhang
  • Jie Lu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5361)

Abstract

A bilevel decision problem may have multiple followers as the lower decision units and have fuzzy demands simultaneously. This paper focuses on problems of fuzzy linear bilevel decision making with multiple followers who share a common objective but have different constraints (FBOSF). Based on the ranking relationship among fuzzy sets defined by cut set and satisfactory degree, a FBOSF model is presented and a particle swarm optimization based algorithm is developed.

Keywords

Bilevel programming bilevel multiple follower decision making particle swarm optimization fuzzy sets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Von Stackelberg, H.: Theory of the Market Economy. Oxford University Press, New York (1952)Google Scholar
  2. 2.
    Bard, J.F.: Practical bilevel optimization: algorithms and applications. Kluwer Academic Publishers, Boston (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    Yu, H., Dang, C., Wang, S.: Game theoretical analysis of buy-it-now price auctions. International Journal of Information Technology and Decision Making 5(3), 557–581 (2006)CrossRefGoogle Scholar
  4. 4.
    Hobbs, B.F., Metzler, B., Pang, J.S.: Strategic gaming analysis for electric power system: an mpec approach. IEEE Transactions on Power System 15, 637–645 (2000)CrossRefGoogle Scholar
  5. 5.
    Zhang, G., Lu, J.: Model and approach of fuzzy bilevel decision making for logistics planning problem. Journal of Enterprise Information Management 20(2), 178–197 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Amat, J., McCarl, B.: A representation and economic interpretation of a two-level programming problem. Journal of the Operational Research Society 32, 783–792 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Feng, C., Wen, C.: Bi-level and multi-objective model to control traffic flow into the disaster area post earthquake. Journal of the Eastern Asia Society for Transportation Studies 6, 4253–4268 (2005)Google Scholar
  8. 8.
    Gao, Y., Zhang, G., Lu, J., Gao, S.: A bilevel model for railway train set organizing optimization. In: 2007 International Conference on Intelligent Systems and Knowledge Engineering (ISKE 2007), pp. 777–782. Atlantis Press (2007)Google Scholar
  9. 9.
    Bard, J.F., Moore, J.T.: A branch and bound algorithm for the bilevel programming problem. SIAM Journal on Scientific and Statistical Computing 11, 281–292 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Shi, C., Lu, J., Zhang, G.: An extended kth-best approach for linear bilevel programming. Applied Mathematics and Computation 164(3), 843–855 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lu, J., Shi, C., Zhang, G., Ruan, D.: An extended branch and bound algorithm for bilevel multi-follower decision making in a referential-uncooperative situation. International Journal of Information Technology and Decision Making 6(2), 371–388 (2007)CrossRefzbMATHGoogle Scholar
  12. 12.
    Shi, C., Lu, J., Zhang, G.: An extended kuhn-tucker approach for linear bilevel programming. Applied Mathematics and Computation 162, 51–63 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Shi, C., Lu, J., Zhang, G., Zhou, H.: An extended branch and bound algorithm for linear bilevel programming. Applied Mathematics and Computation 180(2), 529–537 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Li, X., Tian, P., Min, X.: A hierarchical particle swarm optimization for solving bilevel programming problems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS, vol. 4029, pp. 1169–1178. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    White, D., Anandalingam, G.: A penalty function approach for solving bi-level linear programs. Journal of Global Optimization (3), 397–419 (1993)Google Scholar
  16. 16.
    Gao, Y., Zhang, G., Lu, J.: A particle swarm optimization based algorithm for fuzzy bilevel decision making. In: IEEE International Conference on Fuzzy Systems, pp. 1452–1457 (2008)Google Scholar
  17. 17.
    Lu, J., Shi, C., Zhang, G.: On bilevel multi-follower decision making: General framework and solutions. Information Sciences 176(11), 1607–1627 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kitayama, S., Yasuda, K.: A method for mixed integer programming problems by particle swarm optimization. Electrical Engineering in Japan 157(2), 40–49 (2006)CrossRefGoogle Scholar
  19. 19.
    Sakawa, M., Nishizaki, I., Uemura, Y.: Interactive fuzzy programming for multilevel linear programming problems with fuzzy parameters. Fuzzy Sets and Systems 109, 3–19 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Zhang, G., Lu, J., Dillon, T.: An approximation kuhn-tucker approach for fuzzy linear bilevel decision making problems. In: Jain, L., Wren, G. (eds.) Intelligent Decision Making. Springer, Heidelberg (2007)Google Scholar
  21. 21.
    Zhang, G., Lu, J., Dillon, T.: Kth-best algorithm for fuzzy bilevel programming. In: Proceedings of International Conference on Intelligent Systems and Knowledge Engineering, Shanghai (2006)Google Scholar
  22. 22.
    Zhang, G., Lu, J., Dillon, T.: An approximation branch-and-bound algorithm for fuzzy bilevel decision making problems. In: Proceedings of The 1st International Symposium Advances in Artificial Intelligence and Applications, Poland (2006)Google Scholar
  23. 23.
    Gao, Y., Zhang, G., Lu, J., Zeng, X.: A λ−cut approximate approach to supporting fuzzy goal based bilevel decision making in risk management. In: The First International Conference on Risk Analysis and Crisis Response, pp. 132–137. Atlantis Press (2007)Google Scholar
  24. 24.
    Lu, J., Shi, C., Zhang, G., Dillon, T.: Model and extended kuhn-tucker approach for bilevel multi-follower decision making in a referential-uncooperative situation. International Journal of Global Optimization 38(4), 597–608 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Mathieu, R., Pittard, L., Anandalingam, G.: Genetic algorithm based approach to bi-level linear programming. Recherche Operationnelle 28(1), 1–21 (1994)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Pei, Z., Tian, S., Huang, H.: A novel method for solving nonlinear bilevel programming based on hybrid particle swarm optimization. In: The 8th International Conference on Signal Processing, vol. 3 (2006)Google Scholar
  27. 27.
    Zhao, Z., Gu, X.: Particle swarm optimization based algorithm for bilevel programming problems. In: 2006 6th International Conference on Intelligent Systems Design and Applications (2006)Google Scholar
  28. 28.
    Oduguwa, V., Roy, R.: Bi-level optimisation using genetic algorithm. In: Proceedings of the 2002 IEEE International Conference on Artificial Intelligence Systems, ICAIS 2002 (2002)Google Scholar
  29. 29.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  30. 30.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings Sixth International Symposium on Micro Machine and Human Science (1995)Google Scholar
  31. 31.
    Parsopoulos, K.E., Vrahatis, M.N.: Recent approaches to global optimization problems through particle swarm optimization. Natural Computing 1, 235–306 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Zhang, J.-R., Zhang, J., Lok, T.-M., Lyu, M.R.: A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training. Applied Mathematics and Computation 185(2), 1026–1037 (2007)CrossRefzbMATHGoogle Scholar
  33. 33.
    Ho, S.L., Yang, S., Ni, G., Lo, E.W.C., Wong, H.C.: A particle swarm optimization-based method for multiobjective design optimizations. IEEE Transactions On Magnetics 41(5), 557–581 (2005)Google Scholar
  34. 34.
    Eberhart, R.C., Simpson, P., Dobbins, R.: Computational Intelligence PC Tools. Academic Press, London (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ya Gao
    • 1
  • Guangquan Zhang
    • 1
  • Jie Lu
    • 1
  1. 1.Faculty of Engineering and Information TechnologyUniversity of TechnologySydneyAustralia

Personalised recommendations