Skip to main content

Analysis and Design of Multiple Threshold Changeable Secret Sharing Schemes

  • Conference paper
Cryptology and Network Security (CANS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5339))

Included in the following conference series:

Abstract

In a (r,n)-threshold secret sharing scheme, no group of (r − 1) colluding members can recover the secret value s. However, the number of colluders is likely to increase over time. In order to deal with this issue, one may also require to have the ability to increase the threshold value from r to r′( > r), such an increment is likely to happen several times.

In this paper, we study the problem of threshold changeability in a dealer-free environment. First, we compute a theoretical bound on the information and security rate for such a secret sharing. Second, we show how to achieve multiple threshold change for a Chinese Remainder Theorem like scheme. We prove that the parameters of this new scheme asymptotically reach the previous bound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Transactions on Information Theory IT-29(2), 208–210 (1983)

    Article  MathSciNet  Google Scholar 

  2. Barwick, S.G., Jackson, W.-A., Martin, K.M.: Updating the parameters of a threshold scheme by minimal broadcast. IEEE Transactions on Information Theory 51(2), 620–633 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS 1979 National Computer Conference, New York, USA, June 1979, pp. 313–317. AFIPS Press (1979)

    Google Scholar 

  4. Blakley, G.R., Meadows, C.: Security of ramp schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 242–268. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  5. Blundo, C., Cresti, A., De Santis, A., Vaccaro, U.: Fully dynamic secret sharing schemes. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 110–125. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  6. Desmedt, Y., Jajodia, S.: Redistributing secret shares to new access structures and its applications. Technical Report ISSE TR-97-01, George Mason university (1997)

    Google Scholar 

  7. Jackson, W.-A., Martin, K.M.: A combinatorial interpretation of ramp schemes. Australasian Journal of Combinatorics 14, 51–60 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Maeda, A., Miyaji, A., Tada, M.: Efficient and unconditionally secure verifiable threshold changeable scheme. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp. 402–416. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Martin, K.: Untrustworthy participants in secret sharing schemes. In: Cryptography and Coding III, vol. 45, pp. 255–264. Oxford University Press, Oxford (1993)

    Google Scholar 

  10. Martin, K.M., Pieprzyk, J., Safavi-Naini, R., Wang, H.: Changing thresholds in the absence of secure channels. Australian Computer Journal 31, 34–43 (1999)

    MATH  Google Scholar 

  11. Martin, K.M., Safavi-Naini, R., Wang, H.: Bounds and techniques for efficient redistribution of secret shares to new access structures. The Computer Journal 42(8), 638–649 (1999)

    Article  MATH  Google Scholar 

  12. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Steinfeld, R., Pieprzyk, J., Wang, H.: Lattice-based threshold-changeability for standard CRT secret-sharing schemes. Finite Field and their Applications 12, 653–680 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Steinfeld, R., Wang, H., Pieprzyk, J.: Lattice-based threshold-changeability for standard Shamir secret-sharing schemes. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 170–186. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Stinson, D.R.: Cryptography: Theory and Practice. 3rd edn. Chapman & Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  16. Tamura, Y., Tada, M., Okamoto, E.: Update of access structure in Shamir’s (k,n) threshold scheme. In: The 1999 Symposium on Cryptography and Information Security, Kobe, Japan, January 1999, vol. I, pp. 469–474 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lou, T., Tartary, C. (2008). Analysis and Design of Multiple Threshold Changeable Secret Sharing Schemes. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds) Cryptology and Network Security. CANS 2008. Lecture Notes in Computer Science, vol 5339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89641-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89641-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89640-1

  • Online ISBN: 978-3-540-89641-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics