Skip to main content

Coexistence of MWM Processes via EIT Windows

  • Chapter
Multi-Wave Mixing Processes
  • 545 Accesses

Abstract

In Chapters 6–8, we will describe how different orders of nonlinear wave-mixing processes can be generated to coexist in the same multi-level atomic systems and how these different nonlinear optical processes interact with each other. Typically higher-order nonlinear optical processes are much weaker than the lower-order ones, so only the lowest-order non-zero nonlinear optical process is considered. However, as we will show that under certain laser beam configurations and energy-level arrangements, highly efficient four-wave mixing (FWM) and six-wave mixing (SWM) processes can be made to coexist in the same multi-level atomic systems with similar signal intensities. Due to specially-designed interaction schemes between laser beams and multi-level atomic systems, the atomic coherence and the multi-photon quantum interference induced between different atomic transitions play important roles, and the generated FWM and SWM signals can be made to transmit through the same or dual electromagnetically induced transparency (EIT) windows. These coexisting multi-wave mixing (MWM) processes and their relative strengths can be controlled and tuned by the intensities and the frequency detuning of the pump (or dressing) laser beams. In this chapter, co-existing and enhanced FWM and SWM processes in several four-level atomic systems are presented and their underlying physical mechanisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyd R W. Nonlinear Optics. New York: Academic Press, 1992.

    Google Scholar 

  2. Shen Y R. The Principles of Nonlinear Optics. New York: Wiley, 1984.

    Google Scholar 

  3. Zhang Y P, Brown A W, Xiao M. Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows. Phys. Rev. Lett., 2007, 99: 123603.

    Article  ADS  Google Scholar 

  4. Hemmer P R, Katz D P, Donoghue J, et al. Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium. Opt. Lett., 1995, 20: 982.

    Article  ADS  Google Scholar 

  5. Li Y, Xiao M. Enhancement of non-degenerate four-wave mixing using electromagnetically induced transparency in rubidium atoms. Opt. Lett., 1996, 21: 1064 Lu B, Burkett W H, Xiao M. Nondegenerate four-wave mixing in a double-Lambda system under the influence of coherent population trapping. Opt. Lett., 1998, 23: 804-806.

    Article  ADS  Google Scholar 

  6. Kash M M, Sautenkov V A, Zibrov A S, et al. Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys. Rev. Lett., 1999, 82: 5229–5232.

    Article  ADS  Google Scholar 

  7. Braje D A, Balic V, Goda S, Yin G Y, et al. Frequency mixing using electromagnetically induced transparency in cold atoms. Phys. Rev. Lett., 2004, 93: 183601.

    Article  ADS  Google Scholar 

  8. Kang H, Hernandez G, Zhu Y F. Superluminal and slow light propagation in cold atoms. Phys. Rev. A, 2004, 70: 061804.

    Article  ADS  Google Scholar 

  9. Harris S E. Electromagnetically induced transparency. Phys. Today, 1997, 50: 36–42.

    Article  Google Scholar 

  10. Zhang Y P, Xiao M. Enhancement of six-wave mixing by atomic coherence in a four-level inverted Y system. Appl. Phys. Lett., 2007, 90: 111104.

    Article  ADS  Google Scholar 

  11. Joshi A, Xiao M. Electromagnetically induced transparency and its dispersion properties in a four-level inverted-Y atomic system. Physics Letter A, 2003, 317: 370–377.

    Article  MATH  ADS  Google Scholar 

  12. Gea-Banacloche J, Li Y, Jin S, Xiao M. Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment. Phys. Rev. A, 1995, 51: 576–584.

    Article  ADS  Google Scholar 

  13. Kang H, Hernandez G, Zhu Y F. Slow-light six-wave mixing at low light intensities. Phys. Rev. Lett., 2004, 93: 073601.

    Article  ADS  Google Scholar 

  14. Agarwal G S, Harshawardhan W. Zeeman splitting of the coulomb anomaly: a tunneling study in two dimensions. Phys. Rev. Lett., 1996, 77: 1139–1142.

    Article  ADS  Google Scholar 

  15. Zibrov A S, Ye C Y, Rostovtsev Y V, et al. Observation of a three-photon electromagnetically induced transparency in hot atomic vapor. Phys. Rev. A, 2002, 65, 043817.

    Article  ADS  Google Scholar 

  16. Deng L, Payne M G. Inhibiting the onset of the three-photon destructive interference in ultraslow propagation-enhanced four-wave mixing with dual induced transparency. Phys. Rev. Lett., 2003, 91: 243902.

    Article  ADS  Google Scholar 

  17. Zuo Z C, Sun J, Liu X, et al. Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry. Phys. Rev. Lett., 2006, 97: 193904.

    Article  ADS  Google Scholar 

  18. Hang C, Li Y, Ma L, et al. Three-way entanglement and three-qubit phase gate based on a coherent six-level atomic system. Phys. Rev. A, 2006, 74: 012319.

    Article  ADS  Google Scholar 

  19. Michinel H, Paz-Alonso M J, Perez-Garcia V M. Turning light into a liquid via atomic coherence. Phys. Rev. Lett., 2006, 96: 023903.

    Article  ADS  Google Scholar 

  20. Ma H, De Araujo C B. Interference between third-and fifth-order polarizations in semiconductor doped glasses. Phys. Rev. Lett., 1993, 71: 3649–3652.

    Article  ADS  Google Scholar 

  21. Qi J B, Lazarov G, Wang X J, et al. Autler-Townes Splitting in Molecular Lithium: Prospects for All-Optical Alignment of Nonpolar Molecules. Phys. Rev. Lett., 1999, 83: 288–291.

    Article  ADS  Google Scholar 

  22. Xiao M, Li Y Q, Jin S, et al. Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms. Phys. Rev. Lett., 1995, 74: 666–669.

    Article  ADS  Google Scholar 

  23. Ulness D J, Kirkwood J C, Albrecht A C. Competitive events in fifth order time resolved coherent Raman scattering: Direct versus sequential processes. J. Chem. Phys, 1998, 108: 3897–3902.

    Article  ADS  Google Scholar 

  24. Zhang Y P, Xiao M. Generalized dressed and doubly-dressed multiwave mixing. Opt. Exp., 2007, 15: 7182–7189.

    Article  ADS  Google Scholar 

  25. Zhang Y P, Xiao M. Controlling four-wave and six-wave mixing processes in multilevel atomic systems. Appl. Phys. Lett., 2007, 91: 221108.

    Article  ADS  Google Scholar 

  26. Zhang Y P, Brown A W, Xiao M. Observation of interference between four-wave mixing and six-wave mixing. Opt. Lett., 2007, 32: 1120–1122.

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Higher Education Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Coexistence of MWM Processes via EIT Windows. In: Multi-Wave Mixing Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89528-2_6

Download citation

Publish with us

Policies and ethics