Skip to main content

Raman- and Rayleigh-enhanced Polarization Beats

  • Chapter
Multi-Wave Mixing Processes
  • 537 Accesses

Abstract

In the previous chapters, we have mainly discussed ultrafast polarization beats with multi-level atomic systems, in which laser beams are always near resonance with the atomic transitions. In this chapter, we will turn our attention to some different problems, i.e. to investigate Raman- and Rayleigh-enhanced polarization beats in liquids and solid materials, in which thermal and reorientational gratings are important. In liquids and solid materials, both resonance and nonresonance excitations contribute significantly to the nonlinear optical processes. We present methods to study the Raman-enhanced polarization beats (REPB) with broadband noisy lights using chaotic field, phase-diffusion, and Gaussian-amplitude models. The interferometric contrast ratio of the detected polarization beat signal is shown to be particularly sensitive to amplitude and phase fluctuations of Markovian stochastic fields with arbitrary bandwidth. It is found that the beat signal oscillates not only temporally but also spatially. The overall accuracy of using the REPB to measure the Raman resonant frequency is determined by the relaxation rates of Raman modes and the molecular-reorientational grating. Another interesting feature in field correlations is Rayleigh-enhanced polarization beats. Rayleigh-enhanced four-wave mixing (RFWM) and Raman-enhanced four-wave mixing with color-locking noisy lights shows spectral symmetry and temporal asymmetry that no coherence spike exists at τ=0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Georges A T. Resonance fluorescence in markovian stochastic fields. Phys. Rev. A, 1980, 21: 2034–2049.

    Article  ADS  MathSciNet  Google Scholar 

  2. Ryan R E, Bergeman T H. Hanle effect in nonmonochromatic laser-light. Phys. Rev. A, 1991, 43: 6142–6155.

    Article  ADS  Google Scholar 

  3. Chen C, Elliott D S, Hamilton M W. Two-photon absorption from the real Gaussian field. Phys. Rev. Lett., 1992, 68: 3531–3534.

    Article  ADS  Google Scholar 

  4. Anderson M H, Vemuri G, Cooper J, et al. Experimental study of absorption and gain by two-level atoms in a time-delayed non-Markovian optical field. Phys. Rev. A, 1993, 47: 3202–3209.

    Article  ADS  Google Scholar 

  5. Bratfalean R, Ewart P. Spectral line shape of nonresonant four-wave mixing in Markovian stochastic fields. Phys. Rev. A, 1997, 56, 2267–2279.

    Article  ADS  Google Scholar 

  6. Zhang Y P, Hou X, Lu K Q, et al. Sixth-order correlation on Raman-enhanced polarization beats with phase-conjugation geometry. Opt. Commun., 2000, 184: 265–276.

    Article  ADS  Google Scholar 

  7. Demott D C, Ulness D J, Albrecht A C. Femtosecond temporal probes using spectrally tailored noisy quasi-cw laser light. Phys. Rev. A, 1997, 55: 761–771.

    Article  ADS  Google Scholar 

  8. Ulness D J, Albrecht A C. Theory of time resolved coherent Raman scattering with spectrally tailored noisy light. J. Raman Spectrosc., 1997, 28: 571–578.

    Article  ADS  Google Scholar 

  9. Stimson M J, Ulness D J, Albrecht A C. Time-resolved coherent raman spectroscopy controlled by spectrally tailored noisy light. J. Raman Spectrosc. 1997, 28: 579–587.

    Article  ADS  Google Scholar 

  10. Stimson M J, Ulness D J, Kirkwood J C, et al. Noisy-light correlation functions by frequency resolved optical gating, J. Opt. Soc. Am. B 1998, 15: 505–514.

    Article  ADS  Google Scholar 

  11. Debeer D, Van Wagenen L G, Beach R, et al. Ultrafast modulation spectroscopy. Phys. Rev. Lett. 1986, 56: 1128–1131.

    Article  ADS  Google Scholar 

  12. Ma H, Gomes A S L, De Araujo C B. Raman-assisted polarization beats in time-delayed four-wave mixing. Opt. Lett., 1992, 17: 1052–1054.

    Article  ADS  Google Scholar 

  13. Fu P M, Mi X, Yu Z H, et al. Ultrafast modulation spectroscopy in a cascade three-level system. Phys. Rev. A, 1995, 52: 4867–4870.

    Article  ADS  Google Scholar 

  14. Mi X, Yu ZH, Jiang Q, Fu PM, Time-delayed Raman-enhanced nondegenerate four-wave mixing with a broadband laser source. Phys. Rev. A, 1993, 48: 3203–3208.

    Article  ADS  Google Scholar 

  15. Yu ZH, Mi X, Jiang Q, Li XF, et al, Field-correlation effects on Raman-enhanced nondegenerate four-wave mixing. Phys. Rev. A, 1997, 55: 2334–2339.

    Article  ADS  Google Scholar 

  16. Morita N, Yajima T. Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light.Phys. Rev. A. 1984, 30: 2525–2536.

    Article  ADS  Google Scholar 

  17. Asaka S, Nakatsuka M, Fujiwara M, et al. Accumulated photon echoes with incoherent light in Nd3+-doped silicate glass. Phys. Rev. A, 1984, 29: 2286–2289

    Article  ADS  Google Scholar 

  18. Zhang Y P, Gan C L, Lu K Q, et al. Raman-enhanced polarization beats in Markovian stochastic fields. Opt. Commun., 2002, 205: 163–186.

    Article  ADS  Google Scholar 

  19. Ulness D J, On the Role of Classical Field Time Correlations in Noisy Light Spectroscopy: Color Locking and a Spectral Filter Analogy, J. Phys. Chem. A, 2003, 107: 8111–8123.

    Article  Google Scholar 

  20. Kirkwood J C, Ulness D J, Albrecht A C. On the classification of the electric field spectroscopies: Application to Raman scattering. J. Phys. Chem. A, 2000, 104: 4167–4173.

    Article  Google Scholar 

  21. Dugan M A, Albrecht A C. Radiation-matter oscillations and spectral line narrowing in field-correlated four-wave mixing. I. Theory. Phys. Rev. A, 1991, 43: 3877–3921.

    Article  ADS  Google Scholar 

  22. Zhang Y P, Gan C L, Song J P, et al. Coherent laser control in attosecond sum-frequency polarization beats using twin noisy driving fields. Phys. Rev. A, 2005, 71: 023802.

    Article  ADS  Google Scholar 

  23. Zhang Y P, Gan C L, Song J P, et al. Attosecond sum-frequency raman-enhanced polarization beating by use of twin phase-sensitive color locking noisy light beams. J. Opt. Soc. Am. B, 2005, 22: 694–711.

    Article  ADS  MathSciNet  Google Scholar 

  24. DeBeer D, Usadi E, Hartmann S R. Attosecond beats in sodium vapor. Phys. Rev. Lett., 1988, 60: 1262–1266.

    Article  ADS  Google Scholar 

  25. Fu P M, Jiang Q, Mi X, et al. Rayleigh-type nondegenerate four-wave mixing: ultrafast measurement and field correlation, Phys. Rev. Lett., 2002, 88: 113902.

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Higher Education Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Raman- and Rayleigh-enhanced Polarization Beats. In: Multi-Wave Mixing Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89528-2_5

Download citation

Publish with us

Policies and ethics