Skip to main content

Spherical Harmonics Expansion Equations

  • Chapter
  • First Online:
Transport Equations for Semiconductors

Part of the book series: Lecture Notes in Physics ((LNP,volume 773))

  • 2265 Accesses

The spherical harmonics expansion (SHE) model can be derived from the Boltzmann equation by the three-step procedure introduced in Sect. 2.4. In contrast to the previous chapters, we do not integrate the Boltzmann equation over the whole wave vector space but only over the isoenergetic wave-vector space. As a result, the variable is still a distribution function, but depending on the position-energy space (x,ε) (and time) only and not on the position-wave-vector space (x,k) (and time). Thus, we are able to reduce the seven-dimensional Boltzmann equation to a five-dimensional problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Ben Abdallah and P. Degond. On a hierarchy of macroscopic models for semiconductors. J. Math. Phys. 37 (1996), 3308–3333.

    Google Scholar 

  2. C. Herring and E. Vogt. Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys. Rev. 101 (1956), 944–961.

    Article  MATH  ADS  Google Scholar 

  3. C. Gray and H. Ralph. Solution of Boltzmann’s equation for semiconductors using a spherical harmonic expansion. J. Phys. C: Solid State Phys. 5 (1972), 55–62.

    Article  ADS  Google Scholar 

  4. M. Vecchi and M. Rudan. Modeling electron and hole transport with full-band structure effects by means of the spherical-harmonics expansion of the BTE. IEEE Trans. Electr. Devices 45 (1998), 230–238.

    Article  ADS  Google Scholar 

  5. S. Singh, N. Goldsman, and I. Mayergoyz. Modeling multi-band effects of hot electron transport in silicon by self-consistent solution of the Boltzmann transport and Poisson equations. Solid State Electr. 39 (1996), 1695–1700.

    Article  ADS  Google Scholar 

  6. R. Stratton. The influence of interelectronic collisions on conduction and breakdown in covalent semiconductors. Proc. Royal Soc. London, Ser. A 242 (1957), 355–373.

    Article  MATH  ADS  Google Scholar 

  7. R. Stratton. Diffusion of hot and cold electrons in semiconductor barriers. Phys. Rev. 126 (1962), 2002–2014.

    Article  ADS  Google Scholar 

  8. P. Dmitruk, A. Saul, and L. Reyna. High-electric field approximation to charge transport in semiconductor devices. Appl. Math. Letters 5 (1992), 99–102.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Abramo, F. Venturi, E. Sangiorgi, J. Highman, and B. Riccò. A numerical method to compute isotropic band models from anisotropic semiconductor band structures. IEEE Trans. Computer Aided Design 12 (1993), 1327–1336.

    Article  Google Scholar 

  10. D. Ventura, A. Gnudi, G. Baccarani, and F. Odeh. Multidimensional spherical harmonics expansion of Boltzmann equation for transport in semiconductors. Appl. Math. Letters 5 (1992), 85–90.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Vecchi, D. Ventura, A. Gnudi, and G. Baccarani. Incorporating full band-structure effects in the spherical-harmonics expansion of the Boltzmann transport equation. In: Numerical Modeling of Processes and Devices for Integrated Circuits, Workshop NUPAD V, 55–58. IEEE Press, 1994.

    Google Scholar 

  12. J.-P. Bourgade. On spherical harmonics expansion type models for electron–phonon collisions. Math. Meth. Appl. Sci. 26 (2003), 247–271.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Degond and S. Mancini. Diffusion driven by collisions with the boundary. Asympt. Anal. 27 (2001), 47–73.

    MATH  MathSciNet  Google Scholar 

  14. A. Mellet. Diffusion limit of a nonlinear kinetic model without the detailed balance principle. Monatsh. Math. 134 (2002), 305–329.

    Article  MATH  MathSciNet  Google Scholar 

  15. C. Schmeiser and A. Zwirchmayr. Elastic and drift-diffusion limits of electron–phonon interaction in semiconductors. Math. Models Meth. Appl. Sci. 8 (1998), 37–53.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Gnudi, D. Ventura, G. Baccarani, and F. Odeh. Two-dimensional MOSFET simulation by means of a multidimensional spherical harmonics expansion of the Boltzmann transport equation. Solid State Electr. 36 (1993), 575–581.

    Article  ADS  Google Scholar 

  17. N. Goldsman, L. Henrickson, and J. Frey. A physics-based analytical/numerical solution to the Boltzmann transport equation for use in device simulation. Solid State Electr. 34 (1991), 389–396.

    Article  ADS  Google Scholar 

  18. O. Hansen and A. Jüngel. Analysis of a spherical harmonics expansion model of plasma physics. Math. Models Meth. Appl. Sci. 14 (2004), 759–774.

    Article  MATH  Google Scholar 

  19. P. Degond. Transport of trapped particles in a surface potential. In: C. Cioranescu et al. (eds.), Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Studies Math. Appl. 14, 273–296. Elsevier, Amsterdam, 2002.

    Google Scholar 

  20. P. Degond and K. Zhang. Diffusion approximation of a scattering matrix model of a semiconductor superlattice. SIAM J. Appl. Math. 63 (2002), 279–298.

    Article  MATH  MathSciNet  Google Scholar 

  21. Y. Raiser. Gas Discharge Physics. Springer, Berlin, 1991.

    Google Scholar 

  22. M. Cho and D. Hasting. Dielectric processes and arcing rates of high voltage solar arrays. J. Spacecraft Rockets 28 (1991), 698–706.

    Article  ADS  Google Scholar 

  23. T. Morrone. Time harmonic, spherical harmonic, and power series expansion of the Boltzmann equation. Phys. Fluids 11 (1969), 2617–2620.

    Article  MATH  ADS  Google Scholar 

  24. P. Degond and A. Jüngel. High-field approximations of the energy-transport model for semiconductors with non-parabolic band structure. Z. Angew. Math. Phys. 52 (2001), 1053–1070.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Jüngel .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jüngel, A. (2009). Spherical Harmonics Expansion Equations. In: Transport Equations for Semiconductors. Lecture Notes in Physics, vol 773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89526-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89526-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89525-1

  • Online ISBN: 978-3-540-89526-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics