Skip to main content

Collisionless Models

  • Chapter
  • First Online:
Transport Equations for Semiconductors

Part of the book series: Lecture Notes in Physics ((LNP,volume 773))

  • 2246 Accesses

In this chapter, we consider only long-range interactions, like Coulomb forces, leading to the semi-classical Liouville or Vlasov equations. Models including shortrange interactions are studied in Chap. 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Golberg. The derivative of a determinant. The Amer. Math. Monthly 79 (1972), 1124–1126.

    Article  MATH  MathSciNet  Google Scholar 

  2. P. Markowich, C. Ringhofer, and C. Schmeiser. Semiconductor Equations. Springer, Vienna, 1990.

    MATH  Google Scholar 

  3. Y. Guo. The Vlasov-Maxwell–Boltzmann system near Maxwellians. Invent. Math. 153 (2003), 593–630.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. J. Schaeffer. Steady states of the Vlasov-Maxwell system. Quart. Appl. Math. 63 (2005), 619–643.

    MATH  MathSciNet  Google Scholar 

  5. R. Strain. The Vlasov-Maxwell–Boltzmann system in the whole space. Commun. Math. Phys. 268 (2006), 543–567.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. C. Cercignani, R. Illner, and M. Pulvirenti. The Mathematical Theory of Dilute Gases. Springer, New York, 1994.

    MATH  Google Scholar 

  7. N. Bogoliubov. Problems of a dynamical theory in statistical physics. In: J. de Boer and U. Uhlenbeck (eds.), Studies in Statistical Mechanics, Vol. I, 1–118. North-Holland, Amsterdam, 1962.

    Google Scholar 

  8. M. Born and H. Green. A General Kinetic Theory of Fluids. Cambridge University Press, Cambridge, 1949.

    Google Scholar 

  9. J. Kirkwood. Statistical mechanical theory of transport processes I. General theory. J. Chem. Phys. 14 (1946), 180–201. Errata: 14 (1946), 347.

    Article  ADS  Google Scholar 

  10. J. Yvon. La théorie statistique des fluides. Hermann, Paris, 1935.

    Google Scholar 

  11. H. Neunzert and J. Wick. Theoretische und numerische Ergebnisse zur nichtlinearen Vlasov-Gleichung. Lecture Notes Math. 267, 159–185. Springer, Berlin, 1972.

    Article  MathSciNet  Google Scholar 

  12. R. Dobrushin. Vlasov equations. Funktional. Anal. i Prilozhen 13 (1979), 48–58.

    Article  MATH  MathSciNet  Google Scholar 

  13. W. Braun and K. Hepp. The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles. Commun. Math. Phys. 56 (1977), 101–2113.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. R. Wilson, W. Futterman, and J. Yue. Derivation of the Vlasov equation. Phys. Rev. A 3 (1971), 453–470.

    Article  ADS  MathSciNet  Google Scholar 

  15. J. Batt, N-particle approximation to the Vlasov-Poisson system. Nonlin. Anal. 47 (2001), 1445–1456.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Spohn. Large Scale Dynamics of Interacting Particles. Springer, Berlin, 1991.

    MATH  Google Scholar 

  17. S. Wollman. On the approximation of the Vlasov-Poisson system by particles methods. SIAM J. Numer. Anal. 37 (2000), 1369–1398.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Hauray and P.-E. Jabin. N-particles approximation of the Vlasov equations with singular potential. Arch. Rat. Mech. Anal. 183 (2007), 489–524.

    Article  MATH  MathSciNet  Google Scholar 

  19. T. Passot. From kinetic to fluid descriptions of plasmas. In: Topics in Kinetic Theory, Fields Inst. Commun. 46, 213–242. Amer. Math. Soc., Providence, 2005.

    MathSciNet  Google Scholar 

  20. C. Bardos, F. Golse, A. Gottlieb, and N. Mauser. On the derivation of nonlinear Schrödinger and Vlasov equations. In: Dispersive Transport Equations and Multiscale Models, IMA Math. Anal. 136, 1–23. Springer, New York, 2004.

    MathSciNet  Google Scholar 

  21. K. Pfaffelmoser. Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data. J. Diff. Eqs. 95 (1992), 281–303.

    Article  MATH  MathSciNet  Google Scholar 

  22. C. Bardos and P. Degond. Global existence for the Vlasov-Poisson equation in three space variables with small initial data. Ann. Inst. H. Poincaré, Anal. non linéaire 2 (1985), 101–118.

    MATH  MathSciNet  Google Scholar 

  23. J. Batt. Global symmetric solutions of the initial value problem of stellar dynamics. J. Diff. Eqs. 25 (1977), 342–364.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. P.-L. Lions and B. Perthame. Propagation of moments and regularity for the three-dimensional Vlasov-Poisson system. Invent. Math. 105 (1991), 415–430.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. J. Schaeffer. Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions. Commun. Part. Diff. Eqs. 16 (1991), 1313–1335.

    Article  MATH  MathSciNet  Google Scholar 

  26. E. Horst. On the asymptotic growth of the solutions of the Vlasov-Poisson system. Math. Meth. Appl. Sci. 16 (1993), 75–86.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Jüngel .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jüngel, A. (2009). Collisionless Models. In: Transport Equations for Semiconductors. Lecture Notes in Physics, vol 773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89526-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89526-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89525-1

  • Online ISBN: 978-3-540-89526-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics