Skip to main content

Cut Elimination for First Order Gödel Logic by Hyperclause Resolution

  • Conference paper
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2008)

Abstract

Efficient, automated elimination of cuts is a prerequisite for proof analysis. The method CERES, based on Skolemization and resolution has been successfully developed for classical logic for this purpose. We generalize this method to Gödel logic, an important intermediate logic, which is also one of the main formalizations of fuzzy logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avron, A.: Hypersequents, Logical Consequence and Intermediate Logics for Concurrency. Annals of Mathematics and Artificial Intelligence 4, 225–248 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avron, A.: The Method of Hypersequents in Proof Theory of Propositional Non-Classical Logics. In: Logic: From Foundations to Applications, pp. 1–32. Clarendon Press (1996)

    Google Scholar 

  3. Baaz, M., Ciabattoni, A.: A Schütte-Tait style cut-elimination proof for first-order Gödel logic. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS, vol. 2381, pp. 24–38. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Herbrand’s Theorem for Prenex Gödel Logic and its Consequences for Theorem Proving. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS, vol. 2250, pp. 201–216. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Baaz, M., Hetzl, S., Leitsch, A., Richter, C., Spohr, H.: CERES: An Analysis of Fürstenberg’s Proof of the Infinity of Primes. Theoretical Computer Science (to appear)

    Google Scholar 

  6. Baaz, M., Iemhoff, R.: The Skolemization of existential quantifiers in intuitionistic logic. Ann. of Pure and Applied Logics 142, 269–295 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baaz, M., Leitsch, A.: Cut-elimination and Redundancy-elimination by Resolution. J. Symb. Comput. 29(2), 149–177 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baaz, M., Leitsch, A.: CERES in Many-Valued Logics. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS, vol. 3452, pp. 1–20. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Baaz, M., Leitsch, A.: Towards a clausal analysis of cut-elimination. J. Symb. Comput. 41(3-4), 381–410 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Baaz, M., Leitsch, A., Zach, R.: Incompleteness of an infinite-valued first-order Gödel Logic and of some temporal logic of programs. In: Kleine Büning, H. (ed.) CSL 1995. LNCS, vol. 1092, pp. 1–15. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  11. Baaz, M., Zach, R.: Hypersequents and the Proof Theory of Intuitionistic Fuzzy Logic. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 187–201. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  13. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  14. Harrop, R.: Concerning formulas of the types A ⊃ B ∨ C,A ⊃ ( ∃ x)B(x) in intuitionistic formal systems. J. Symbolic Logic 25, 27–32 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  15. Leitsch, A.: The Resolution Calculus. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  16. Mints, G.: The Skolem method in intuitionistic calculi. Proc. Inst. Steklov. 121, 73–109 (1974)

    Google Scholar 

  17. Orevkov, V.P.: Lower Bounds for Increasing Complexity of Derivations after Cut Elimination. J. Soviet Mathematics, 2337–2350 (1982)

    Google Scholar 

  18. Schütte, K.: Beweistheorie. Springer, Heidelberg (1960)

    MATH  Google Scholar 

  19. Statman, R.: Lower bounds on Herbrand’s theorem. Proc. of the Amer. Math. Soc. 75, 104–107 (1979)

    MathSciNet  MATH  Google Scholar 

  20. Tait, W.W.: Normal derivability in classical logic. The Syntax and Semantics of infinitary Languages LNM 72, 204–236 (1968)

    Article  MATH  Google Scholar 

  21. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn., Cambridge (2000)

    Google Scholar 

  22. Takeuti, G., Titani, T.: Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. J. Symbolic Logic 49, 851–866 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baaz, M., Ciabattoni, A., Fermüller, C.G. (2008). Cut Elimination for First Order Gödel Logic by Hyperclause Resolution. In: Cervesato, I., Veith, H., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2008. Lecture Notes in Computer Science(), vol 5330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89439-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89439-1_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89438-4

  • Online ISBN: 978-3-540-89439-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics