Advertisement

Design and Deployment of Large-Scale Software-Intensive Systems in Urban Districts

Research Challenges toward Future Affluent Ambient Society
  • Teruo Higashino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5380)

Abstract

With the advance of ubiquitous computing and ambient intelligence, several thousands of sensors and mobile devices can collaborate with each other in order to collect sensing information in wide areas and distribute location-aware information in real-time. In urban districts, several types of ubiquitous applications will be deployed and used in parallel in near future. It is known that reliability and performance of such ubiquitous applications are strongly affected by node mobility, fluctuation of node density, data transmission mechanisms (protocols), and so on. Therefore, in order to design and deploy such ubiquitous applications in urban districts as societal systems, we must anticipate the behavior pattern (mobility) of pedestrians and vehicles in those areas and develop resilient design methodology for high-reliable deployment and management of ubiquitous devices in underlying wireless communication environments. Intellectual management of a large amount of sensing information in mobile wireless Internet environments is also becoming important. Here, we focus on large-scale mobile wireless ubiquitous systems in urban districts as complex software-intensive systems, and discuss about research challenges for their design and deployment.

Keywords

Software-intensive systems ubiquitous systems MANET urban planning software design methodology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bai, F., Sadagopan, N., Helmy, A.: The IMPORTANT Framework for Analyzing the Impact of Mobility on Performance of Routing Protocols for Ad hoc Networks. Ad. Hoc. Networks 1(4), 383–403 (2003)CrossRefGoogle Scholar
  2. 2.
    Camp, T., Boleng, J., Davies, V.: A Survey of Mobility Models for Ad Hoc Network Research. Wireless Communications and Mobile Computing Journal 2(5), 483–502 (2002)CrossRefGoogle Scholar
  3. 3.
    CitySense Project: CitySense - An Open, Urban-Scale Sensor Network Testbed, http://www.citysense.net/
  4. 4.
    Foster, H.D., Krolnik, A.C., Lacey, D.J.: Assertion-Based Design, 2nd edn. Kluwer Academic, Dordrecht (2004)Google Scholar
  5. 5.
    The Globus Toolkit, http://www.globus.org/
  6. 6.
    Higashino, T., Yamaguchi, H.: A Testing Architecture for Designing High-Reliable MANET Protocol. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 20–23. Springer, Heidelberg (2005) (Invited Paper/Keynote Speech)CrossRefGoogle Scholar
  7. 7.
    Ikeda, K., Mori, S., Ota, Y., Umedu, T., Hiromori, A., Yamaguchi, H., Higashino, T.: D-Sense: An Integrated Environment for Algorithm Design and Protocol Implementation in Wireless Sensor Networks. In: MMNS 2008. LNCS, vol. 5274, pp. 20–32. Springer, Heidelberg (2008)Google Scholar
  8. 8.
    Information Technology for European Advancement (ITEA) Office Association: ITEA Technology Roadmap for Software-Intensive Systems, 2nd edn. (2004), http://www.itea-office.org
  9. 9.
    Le Boudec, J.-Y., Vojnovic, M.: Perfect Simulation and Stationarity of a Class of Mobility Models. In: Proc. of 24th IEEE Int. Conf. on Computer Communications (INFOCOM 2005), vol. 4, pp. 2743–2754 (2005)Google Scholar
  10. 10.
    Maeda, K., Sato, K., Konishi, K., Yamasaki, A., Uchiyama, A., Yamaguchi, H., Yasumoto, K., Higashino, T.: Getting Urban Pedestrian Flow from Simple Observation: Realistic Mobility Generation in Wireless Network Simulation. In: Proc. of 8th ACM/IEEE Int. Symp. on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM 2005), pp. 151–158 (2005)Google Scholar
  11. 11.
    Maeda, K., Uchiyama, A., Umedu, T., Yamaguchi, H., Yasumoto, K., Higashino, T.: Urban Pedestrian Mobility for Mobile Wireless Network Simulation. Ad. Hoc. Networks 7(1), 153–170 (2009)CrossRefGoogle Scholar
  12. 12.
    Maeda, K., Nakata, K., Umedu, T., Yamaguchi, H., Yasumoto, K., Higashino, T.: Hybrid Testbed Enabling Run-time Operations for Wireless Applications. In: Proc. of 22nd ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed Simulation (PADS 2008), pp. 135–143 (2008)Google Scholar
  13. 13.
    Mahadevan, P., Rodriguez, A., Becker, D., Vahdat, A.: MobiNet: a scalable emulation infrastructure for ad hoc and wireless networks. ACM SIGMOBILE Mobile Computing and Communications Review 10(2), 26–37 (2006)CrossRefGoogle Scholar
  14. 14.
    Mauve, M., Widmer, J., Hartenstein, H.: A survey on Position-Based Routing in Mobile Ad Hoc Networks. IEEE Network Magazine 15(6), 30–39 (2001)CrossRefGoogle Scholar
  15. 15.
    MobiREAL Network Simulator Web Page, http://www.mobireal.net/
  16. 16.
    Mori, H., Kitaoka, H., Teramoto, E.: Traffic simulation for predicting traffic situations at Expo. 2005. R&D Review of Toyota CRDL 41(4), 45–51 (2006)Google Scholar
  17. 17.
    Nakanishi, K., Umedu, T., Higashino, T., Mori, H., Kitaoka, H.: Synthesizing Realistic Vehicular Mobility for More Precise Simulation of Inter-vehicle Communication. In: Proc. of 2nd IEEE Workshop on Automotive Networking and Applications (AutoNet 2007), CD-ROM (2007)Google Scholar
  18. 18.
    Nakamura, M., Urabe, H., Uchiyama, A., Umedu, T., Higashino, T.: Realistic Mobility Aware Information Gathering in Disaster Areas. In: Proc. of IEEE Wireless Communications and Networking Conf. 2008 (WCNC 2008), pp. 3267–3272 (2008)Google Scholar
  19. 19.
    Saito, M., Tsukamoto, J., Umedu, T., Higashino, T.: Design and Evaluation of Inter-Vehicle Dissemination Protocol for Propagation of Preceding Traffic Information. IEEE Transactions on Intelligent Transportation Systems 8(3), 379–390 (2007)CrossRefGoogle Scholar
  20. 20.
    Stojmenovic, I.: Position Based Routing in Ad Hoc Wireless Networks. IEEE Communications Magazine 40(7), 128–134 (2002)CrossRefGoogle Scholar
  21. 21.
    Umedu, T., Urabe, H., Tsukamoto, J., Sato, K., Higashino, T.: A MANET Protocol for Information Gathering from Disaster Victims. In: Proc. of 4th IEEE Int. Conf. on Pervasive Comp. and Comm. Workshops (PERCOMW 2006), pp. 442–446 (2006) (Invited Paper)Google Scholar
  22. 22.
    Wang, Q., Zhu, Y., Cheng, L.: Reprogramming Wireless Sensor Networks: Challenges and Approaches. IEEE Network 20(3), 48–55 (2006)CrossRefGoogle Scholar
  23. 23.
    Werner-Allen, G., Swieskowski, P., Welsh, M.: MoteLab: aWireless Sensor Network Testbed. In: Proc. of 4th Int. Symp. on Information Processing in Sensor Networks (IPSN 2005), pp. 483–488 (2005)Google Scholar
  24. 24.
    Wirsing, M., Holzl, M.: Software-Intensive Systems, Report of the Beyond-the-Horizon, WG6 of IST-FET Coordinated Action (2007)Google Scholar
  25. 25.
    Zhou, J., Ji, Z., Bagrodia, R.: TWINE: A Hybrid Emulation Testbed for Wireless Networks and Applications. In: Proc. of 25th IEEE Int. Conf. on Computer Communications (INFOCOM 2006), CD-ROM (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Teruo Higashino
    • 1
    • 2
  1. 1.Graduate School of Information Science and TechnologyOsaka UniversityJapan
  2. 2.Japan Science Technology and Agency, CRESTOsakaJapan

Personalised recommendations