Advertisement

Emerging Models of Computation: Directions in Molecular Computing

Position Paper for InterLink Workshop, May 2007
  • Darko Stefanovic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5380)

Abstract

Computing as we have known it for 60 years is based on the von Neumann stored-program concept and its ubiquitous implementation in the form of electronic instruction processors. For the past four decades, processors have been fabricated using semiconductor integrated circuits, the dominant material being silicon, and the dominant technology CMOS. Relentless miniaturization has been decreasing feature size and increasing both the operating frequency and the number of elements per chip, giving rise to so-called Moore’s law (which we interpret broadly to mean the expectation of an exponential improvement in salient performance parameters).

Keywords

American Chemical Society Logic Gate Deoxyribose Nucleic Acid Molecular Computing Control Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ganusov, I., Burtscher, M.: Future execution: A prefetching mechanism that uses multiple cores to speed up single threads. ACM Transactions on Architecture and Code Optimization 3(4), 424–449 (2006)CrossRefGoogle Scholar
  2. 2.
    Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight Jr., T.F., Nagpal, R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Communications of the ACM 43(5), 74–82 (2000)CrossRefGoogle Scholar
  3. 3.
    Goldstein, S.C., Rosewater, D.: Digital logic using molecular electronics. In: IEEE International Solid-State Circuits Conference, San Francisco, CA, p. 12.5 (February 2002)Google Scholar
  4. 4.
    Gruau, F., Lhuillier, Y., Reitz, P., Temam, O.: Blob computing. In: Computing Frontiers 2004 ACM SIGMicro (June 2004)Google Scholar
  5. 5.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)CrossRefGoogle Scholar
  6. 6.
    Deaton, R.J., Garzon, M., Rose, J.A., Franceschetti, D.R., Stevens Jr., S.E.: DNA computing: A review. Fundamenta Informaticae 35(1-4), 231–245 (1998)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Lipton, R.J.: DNA solution of hard computational problems. Science 268, 542–545 (1995)CrossRefGoogle Scholar
  8. 8.
    Ruben, A.J., Landweber, L.F.: Timeline: The past, present and future of molecular computing. Nature Reviews Molecular Cell Biology 1, 69–72 (2000)CrossRefGoogle Scholar
  9. 9.
    Wang, L., Liu, Q., Corn, R.M., Condon, A.E., Smith, L.M.: Multiple word DNA computing on surfaces. Journal of the American Chemical Society 122(31), 7435–7440 (2000)CrossRefGoogle Scholar
  10. 10.
    Winfree, E.: On the computational power of DNA annealing and ligation. In: Lipton, Baum (eds.) [93], pp. 199–221Google Scholar
  11. 11.
    Winfree, E.: Complexity of restricted and unrestricted models of molecular computation. In: Lipton, Baum (eds.) [93], pp. 187–198Google Scholar
  12. 12.
    Watson, J.D., Crick, F.H.C.: A structure for deoxyribose nucleic acid. Nature 171, 737 (1953)CrossRefGoogle Scholar
  13. 13.
    LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman, N.C.: Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. Journal of the American Chemical Society 122, 1848–1860 (2000)CrossRefGoogle Scholar
  14. 14.
    Watson, J.D., Hopkins, N.H., Roberts, J.W., Steitz, J.A., Weiner, A.M.: Molecular Biology of the Gene, 4th edn., Benjamin/Cummings, Menlo Park, CA (1988)Google Scholar
  15. 15.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)CrossRefGoogle Scholar
  16. 16.
    Wang, L., Hall, J.G., Lu, M., Liu, Q., Smith, L.M.: A DNA computing readout operation based on structure-specific cleavage. Nature Biotechnology 19, 1053–1059 (2001)CrossRefGoogle Scholar
  17. 17.
    Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.: Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296, 499–502 (2002)CrossRefGoogle Scholar
  18. 18.
    Morimoto, N., Arita, M., Suyama, A.: Solid phase DNA solution to the Hamiltonian path problem. In: Rubin, Wood (eds.) [92], pp. 193–206Google Scholar
  19. 19.
    Ouyang, Q., Kaplan, P.D., Liu, S., Libchaber, A.: DNA solution of the maximal clique problem. Science 278, 446–449 (1997)CrossRefGoogle Scholar
  20. 20.
    Pirrung, M.C., Connors, R.V., Odenbaugh, A.L., Montague-Smith, M.P., Walcott, N.G., Tollett, J.J.: The arrayed primer extension method for DNA microchip analysis. Molecular computation of satisfaction problems. Journal of the American Chemical Society 122, 1873–1882 (2000)CrossRefGoogle Scholar
  21. 21.
    Garzon, M., Gao, Y., Rose, J.A., Murphy, R.C., Deaton, R.J., Franceschetti, D.R., Stevens Jr., S.E.: In vitro implementation of finite-state machines. In: Wood, D., Yu, S. (eds.) WIA 1997. LNCS, vol. 1436, pp. 56–74. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Guarnieri, F., Fliss, M., Bancroft, C.: Making DNA add. Science 273, 220–223 (1996)CrossRefGoogle Scholar
  23. 23.
    Hug, H., Schuler, R.: DNA-based parallel computation of simple arithmetic. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Mao, C., LaBean, T.H., Reif, J.H., Seeman, N.C.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496 (2000); Erratum. Nature 408, 750 (2000)CrossRefGoogle Scholar
  25. 25.
    Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares. In: STOC 2000: The Thirty-Second Annual ACM Symposium on Theory of Computing (May 2000)Google Scholar
  26. 26.
    Faulhammer, D., Cukras, A.R., Lipton, R.J., Landweber, L.F.: Molecular computation: RNA solutions to chess problems. Proceedings of the National Academy of Sciences of the USA (PNAS) 97(4), 1385–1389 (2000), http://www.pnas.org/cgi/content/full/97/4/1385/DC1 CrossRefGoogle Scholar
  27. 27.
    Hartmanis, J.: On the weight of computation. Bulletin of the EATCS 55, 136–138 (1995)zbMATHGoogle Scholar
  28. 28.
    Hug, H., Schuler, R.: Strategies for the development of a peptide computer. Bioinformatics 17(4), 364–368 (2001)CrossRefGoogle Scholar
  29. 29.
    Winfree, E.: Simulations of computing by self-assembly. In: Kari, L., Rubin, H., Wood, D.H. (eds.) DNA Based Computers IV, DIMACS Workshop 1998 (University of Pennsylvania: Philadelphia, PA, Biosystems, vol. 52(1-3), pp. 213–242. Elsevier, Amsterdam (1998)Google Scholar
  30. 30.
    Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)CrossRefGoogle Scholar
  31. 31.
    Basu, S., Karig, D., Weiss, R.: Engineering signal processing in cells: Towards molecular concentration band detection. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  32. 32.
    Conrad, M.: On design principles for a molecular computer. Communications of the ACM 28(3), 464–480 (1985)CrossRefGoogle Scholar
  33. 33.
    Guet, C.C., Elowitz, M.B., Wang, W., Leibler, S.: Combinatorial synthesis of genetic networks. Science 296, 1466–1470 (2002)CrossRefGoogle Scholar
  34. 34.
    Hayes, B.: Computing comes to life. American Scientist 89, 204–208 (2001)CrossRefGoogle Scholar
  35. 35.
    Ji, S.: The cell as the smallest DNA-based molecular computer. BioSystems 52, 123–133 (1999)CrossRefGoogle Scholar
  36. 36.
    Knight Jr., T.F., Sussman, G.J.: Cellular gate technology. In: Proceedings UMC 1998, First International Conference on Unconventional Models of Computation (1998)Google Scholar
  37. 37.
    LaBean, T.H., Winfree, E., Reif, J.H.: Experimental progress in computation by self-assembly of DNA tilings. In: Winfree, E., Gifford, D.K. (eds.) DNA Based Computers V, DIMACS Workshop 1999 (MIT: Cambridge, MA). Series in Discrete Mathematics and Theoretical Computer Science, vol. 54, pp. 123–140. American Mathematical Society (2000)Google Scholar
  38. 38.
    Landweber, L.F., Kari, L.: The evolution of cellular computing: nature’s solution to a computational problem. BioSystems 52(1–3), 3–13 (1999)CrossRefGoogle Scholar
  39. 39.
    Landweber, L.F., Kuo, T.-C., Curtis, E.A.: Evolution and assembly of an extremely scrambled gene. Proceedings of the National Academy of Sciences of the USA 97(7), 3298–3303 (2000)CrossRefGoogle Scholar
  40. 40.
    Reif, J.H.: Parallel biomolecular computation. In: Rubin, Wood (eds.) [92], pp. 217–254Google Scholar
  41. 41.
    Saylor, G.: Construction of genetic logic gates for biocomputing. In: 101st General Meeting of the American Society for Microbiology (2001)Google Scholar
  42. 42.
    Weiss, R.: Cellular Computation and Communication using Engineered Genetic Regulatory Networks. PhD thesis, Massachusetts Institute of Technology (September 2001)Google Scholar
  43. 43.
    Weiss, R., Basu, S.: The device physics of cellular logic gates. In: First Workshop on Non-Silicon Computing (February 2002)Google Scholar
  44. 44.
    Weiss, R., Homsy, G., Nagpal, R.: Programming biological cells. Technical report, MIT Laboratory for Computer Science and Artificial Intelligence (1998)Google Scholar
  45. 45.
    Weiss, R., Homsy, G.E., Knight Jr., T.F.: Towards in vivo digital circuits. In: DIMACS Workshop on Evolution as Computation (January 1999)Google Scholar
  46. 46.
    Winfree, E., Yang, X., Seeman, N.C.: Universal computation via self-assembly of DNA: Some theory and experiments. In: Landweber, L.F., Baum, E.B. (eds.) DNA Based Computers II, DIMACS Workshop 1996 (Princeton University: Princeton, NJ). Series in Discrete Mathematics and Theoretical Computer Science, vol. 44, pp. 191–213. American Mathematical Society (1999), http://www.dna.caltech.edu/Papers/self-assem.errata
  47. 47.
    Patwardhan, J., Johri, V., Dwyer, C., Lebeck, A.R.: A defect tolerant self-organizing nanoscale simd architecture. In: Proceedings of the Twelth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS XII (2006)Google Scholar
  48. 48.
    Cox, J.C., Ellington, A.D.: DNA computation function. Current Biology 11(9), R336 (2001)CrossRefGoogle Scholar
  49. 49.
    Yurke, B., Mills Jr., A.P., Cheng, S.L.: DNA implementation of addition in which the input strands are separate from the operator strands. BioSystems 52(1–3), 165–174 (1999)CrossRefGoogle Scholar
  50. 50.
    Stojanovic, M.N., de Prada, P., Landry, D.W.: Catalytic molecular beacons. Chem. Bio. Chem. 2(6), 411–415 (2001)CrossRefGoogle Scholar
  51. 51.
    Stojanovic, M.N., Mitchell, T.E., Stefanovic, D.: Deoxyribozyme-based logic gates. Journal of the American Chemical Society 124(14), 3555–3561 (2002)CrossRefGoogle Scholar
  52. 52.
    Stojanovic, M.N., Kolpashchikov, D.: Modular aptameric sensors. Journal of the American Chemical Society 126(30), 9266–9270 (2004)CrossRefGoogle Scholar
  53. 53.
    Stojanovic, M.N., Semova, S., Kolpashchikov, D., Morgan, C., Stefanovic, D.: Deoxyribozyme-based ligase logic gates and their initial circuits. Journal of the American Chemical Society 127(19), 6914–6915 (2005)CrossRefGoogle Scholar
  54. 54.
    Stojanovic, M.N., Stefanovic, D.: Deoxyribozyme-based half adder. Journal of the American Chemical Society 125(22), 6673–6676 (2003)CrossRefGoogle Scholar
  55. 55.
    Stojanovic, M.N., Stefanovic, D.: A deoxyribozyme-based molecular automaton. Nature Biotechnology 21(9), 1069–1074 (2003)CrossRefGoogle Scholar
  56. 56.
    Macdonald, J., Li, Y., Sutovic, M., Lederman, H., Pendri, K., Lu, W., Andrews, B.L., Stefanovic, D., Stojanovic, M.N.: Medium scale integration of molecular logic gates in an automaton. Nano Letters 6(11), 2598–2603 (2006)CrossRefGoogle Scholar
  57. 57.
    Andrews, B.: Games, strategies, and boolean formula manipulation. Master’s thesis, University of New Mexico (December 2005)Google Scholar
  58. 58.
    Epstein, I.R., Pojman, J.A.: An Introduction to Nonlinear Chemical Dynamics. Oxford University Press, New York (1998)Google Scholar
  59. 59.
    Field, R.J., Körös, E., Noyes, R.: Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system. Journal of the American Chemical Society 94, 8649–8664 (1972)CrossRefGoogle Scholar
  60. 60.
    Noyes, R., Field, R.J., Körös, E.: Oscillations in chemical systems. I. Detailed mechanism in a system showing temporal oscillations. Journal of the American Chemical Society 94, 1394–1395 (1972)CrossRefGoogle Scholar
  61. 61.
    Tyson, J.J.: The Belousov-Zhabotinskii Reaction. Lecture Notes in Biomathematics, vol. 10. Springer, Berlin (1976)zbMATHGoogle Scholar
  62. 62.
    Hjelmfelt, A., Ross, J.: Chemical implementation and thermodynamics of collective neural networks. Proceedings of the National Academy of Sciences of the USA 89(1), 388–391 (1992)CrossRefGoogle Scholar
  63. 63.
    Hjelmfelt, A., Ross, J.: Pattern recognition, chaos, and multiplicity in neural networks of excitable systems. Proceedings of the National Academy of Sciences of the USA 91(1), 63–67 (1994)CrossRefGoogle Scholar
  64. 64.
    Hjelmfelt, A., Schneider, F.W., Ross, J.: Pattern recognition in coupled chemical kinetic systems. Science 260, 335–337 (1993)CrossRefGoogle Scholar
  65. 65.
    Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of neural networks and Turing machines. Proceedings of the National Academy of Sciences of the USA 88(24), 10983–10987 (1991)CrossRefzbMATHGoogle Scholar
  66. 66.
    Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of finite-state machines. Proceedings of the National Academy of Sciences of the USA 89(1), 383–387 (1992)CrossRefGoogle Scholar
  67. 67.
    Laplante, J.-P., Pemberton, M., Hjelmfelt, A., Ross, J.: Experiments on pattern recognition by chemical kinetics. The Journal of Physical Chemistry 99(25), 10063–10065 (1995)CrossRefGoogle Scholar
  68. 68.
    Rössler, O.E., Seelig, F.F.: A Rashevsky-Turing system as a two-cellular flip-flop. Zeitschrift für Naturforschung 27b, 1444–1448 (1972)Google Scholar
  69. 69.
    Seelig, F.F., Rössler, O.E.: Model of a chemical reaction flip-flop with one unique switching input. Zeitschrift für Naturforschung 27b, 1441–1444 (1972)Google Scholar
  70. 70.
    Szilard, L.: Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Zeitschrift für Physik 53, 840–856 (1929)CrossRefzbMATHGoogle Scholar
  71. 71.
    Matías, M.A., Güémez, J.: On the effects of molecular fluctuations on models of chemical chaos. Journal of Chemical Physics 102(4), 1597–1606 (1995)CrossRefGoogle Scholar
  72. 72.
    Moore, C.: Unpredictability and undecidability in dynamical systems. Physical Review Letters 64(20), 2354–2357 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    Wolfram, S.: Undecidability and intractability in theoretical physics. Physical Review Letters 54(8), 735–738 (1985)MathSciNetCrossRefGoogle Scholar
  74. 74.
    Winfree, A.T.: Spiral waves of chemical activity. Science 175, 634–635 (1972)CrossRefGoogle Scholar
  75. 75.
    Steinbock, O., Kettunen, P., Showalter, K.: Chemical wave logic gates. Journal of Physical Chemistry 100, 18970–18975 (1996)CrossRefGoogle Scholar
  76. 76.
    Yurke, B., Turberfield, A.J., Mills Jr., A.P., Neumann, J.L.: A molecular machine made of and powered by DNA. In: The 2000 March Meeting of the American Physical Society (March 2000)Google Scholar
  77. 77.
    Magnasco, M.O.: Molecular combustion motors. Physical Review Letters 72(16), 2656–2659 (1994)CrossRefGoogle Scholar
  78. 78.
    Magnasco, M.O.: Chemical kinetics is Turing universal. Physical Review Letters 78(6), 1190–1193 (1997)CrossRefGoogle Scholar
  79. 79.
    Homsy, G.E.: Performance limits on biochemical computation. Technical report, MIT Artificial Intelligence Laboratory (2000)Google Scholar
  80. 80.
    Hiratsuka, M., Aoki, T., Higuchi, T.: Enzyme transistor circuits for reaction-diffusion computing. IEEE Transactions on Circuits and systems—I: Fundamental Theory and Applications 46(2), 294–303 (1999)CrossRefGoogle Scholar
  81. 81.
    Hiratsuka, M., Aoki, T., Morimitsu, H., Higuchi, T.: Implementation of reaction-diffusion cellular automata. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49(1), 10–16 (2002)CrossRefGoogle Scholar
  82. 82.
    Morgan, C., Stefanovic, D., Moore, C., Stojanovic, M.N.: Building the components for a biomolecular computer. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) Preliminary Proceedings of the 10th International Workshop on DNA-Based Computers, DNA 2004. University of Milano-Bicocca, Milan (2004)Google Scholar
  83. 83.
    Farfel, J., Stefanovic, D.: Towards practical biomolecular computers using microfluidic deoxyribozyme logic gate networks. In: Carbone, A., Daley, M., Kari, L., McQuillan, I., Pierce, N. (eds.) Preliminary Proceedings of the 11th International Workshop on DNA-Based Computers, DNA 2005, pp. 221–232. University of Western Ontario, London (2005)Google Scholar
  84. 84.
    Alberts, B., Bray, D., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Essential Cell Biology: An Introduction to the Molecular Biology of the Cell. Garland, New York (1998)Google Scholar
  85. 85.
    Arkin, A., Ross, J.: Computational functions in biochemical reaction networks. Biophysical Journal 67(2), 560–578 (1994)CrossRefGoogle Scholar
  86. 86.
    Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms: The molecular bases of periodic and chaotic behaviour. Cambridge University Press, Cambridge (1996)CrossRefzbMATHGoogle Scholar
  87. 87.
    Okamoto, M., Hayashi, K.: Dynamic behavior of cyclic enzyme systems. Journal of Theoretical Biology 104, 591–598 (1983)CrossRefGoogle Scholar
  88. 88.
    Okamoto, M., Sakai, T., Hayashi, K.: Switching mechanism of a cyclic enzyme system: Role as a “chemical diode”. BioSystems 21(1), 1–11 (1987)CrossRefGoogle Scholar
  89. 89.
    Sugita, M.: Functional analysis of chemical systems in vivo using a logical circuit equivalent. II. The idea of a molecular automaton. Journal of Theoretical Biology 4, 179–192 (1963)CrossRefGoogle Scholar
  90. 90.
    Fukuda, N., Sugita, M.: Mathematical analysis of metabolism using an analogue computer: I. Isotope kinetics of iodine metabolism in the thyroid gland. Journal of Theoretical Biology 1, 440–459 (1961)Google Scholar
  91. 91.
    Pei, R., Taylor, S.K., Stefanovic, D., Rudchenko, S., Mitchell, T.E., Stojanovic, M.N.: Behavior of polycatalytic assemblies in a substrate-displaying matrix. Journal of the American Chemical Society 128(39), 12693–12699 (2006)CrossRefGoogle Scholar
  92. 92.
    Rubin, H., Wood, D.H. (eds.): DNA Based Computers III, DIMACS Workshop 1997 (University of Pennsylvania: Philadelphia, PA). Series in Discrete Mathematics and Theoretical Computer Science, vol. 48. American Mathematical Society (1999)Google Scholar
  93. 93.
    Lipton, R.J., Baum, E.B.: DNA Based Computers, DIMACS Workshop 1995 (Princeton University: Princeton, NJ). Series in Discrete Mathematics and Theoretical Computer Science, vol. 27. American Mathematical Society (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Darko Stefanovic
    • 1
  1. 1.Department of Computer ScienceUniversity of New MexicoUSA

Personalised recommendations