Mathematical Support for Ensemble Engineering

  • Michael Johnson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5380)


We study some of the mathematical challenges presented by the need to support ensemble engineering, concentrating on likely contributions from category theory and universal algebra. Particular attention is paid to dealing with missing data, modelling dynamics and interaction, and analysing inconsistencies.


Ensemble engineering category theory universal algebra inconsistency analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barr, M., Wells, C.: Category theory for computing science, 2nd edn. Prentice-Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  2. 2.
    Ehrig, H., Mahr, B.: Fundamentals of algebraic specifications. Springer, Heidelberg (1985)CrossRefzbMATHGoogle Scholar
  3. 3.
    Hölzl, M., Wirsing, M.: State of the Art for the Engineering of Software-Intensive Systems. Deliverable Number D3.1 (2007) (accessed July 19, 2008),
  4. 4.
    Johnson, M.: Enterprise Software with Half-Duplex Interoperations. In: Doumeingts, G., Mueller, J., Morel, G., Vallespir, B. (eds.) Enterprise Interoperability: New Challenges and Approaches, pp. 521–530. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Johnson, M., Rosebrugh, R.: View Updatability Based on the Models of a Formal Specification. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, p. 534. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Johnson, M., Rosebrugh, R.: Three approaches to partiality in the sketch data model. ENTCS 78, 1–18 (2003)zbMATHGoogle Scholar
  7. 7.
    Johnson, M., Rosebrugh, R.: Fibrations and Universal View Updatability. Theoretical Computer Science 388, 109–129 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Johnson, M., Rosebrugh, R., Wood, R.J.: Entity-relationship models and sketches. Theory and Applications of Categories 10, 94–112 (2002)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Katis, P., Sabadini, N., Walters, R.F.C.: Bicategories of processes. J. Pure Appl. Algebra 115, 141–178 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Katis, P., Sabadini, N., Walters, R.F.C.: On the algebra of systems with feedback and boundary. Rendiconti del Circolo Matematico di Palermo Serie II  Suppl. 63, 123–156 (2000)zbMATHGoogle Scholar
  11. 11.
    Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Graduate Texts in Mathematics 5. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  12. 12.
    Menon, C.: A category theoretic approach to inconsistencies in modular system specification. PhD thesis, University of Adelaide (2006)Google Scholar
  13. 13.
    Walters, R.F.C.: Categories and Computer Science. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Michael Johnson
    • 1
  1. 1.Macquarie UniversitySydneyAustralia

Personalised recommendations