Advertisement

Abstract

Although Functional Size Measurement (FSM) methods have become widely used by the software organizations, the functional size based effort estimation still needs further investigation. Most of the studies on effort estimation consider total functional size of the software as the primary input to estimation models and they mostly focus on identifying the project parameters which might have a significant effect on the size-effort relationship. This study brings suggestions on how to use COSMIC functional size as an input for effort estimation models and explores whether the productivity values for developing different functionality types deviate significantly from a total average productivity value computed from total functional size and effort figures. The results obtained after conducting a multiple case study in which COSMIC method was used for size measurement are discussed as well.

Keywords

Functional Size Measurement Effort Estimation Functionality COSMIC Base Functional Component 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abran, A., Gil, B., Lefebvre, E.: Estimation Models Based on Functional Profiles. In: International Workshop on Software Measurement – IWSM/MetriKon, Kronisburg, Germany, pp. 195–211. Shaker Verlag (2004)Google Scholar
  2. 2.
    Abran, A., Ndiaye, I., Bourque, P.: Contribution of Software Size in Effort Estimation, Research Lab. In: Software Engineering, École de Technologie Supérieure, Canada (2003)Google Scholar
  3. 3.
    Abran, A., Panteliuc, A.: Estimation Models Based on Functional Profiles. III Taller Internacional de Calidad en Technologias de Information et de Communications, Cuba, (February 15-16, 2007)Google Scholar
  4. 4.
    Abran, A., St-Pierre, D., Maya, M., Desharnais, J.M.: Full Function Points for Embedded and Real-Time Software. In: UKSMA Fall Conference, London, UK, October, pp. 30–31 (1998)Google Scholar
  5. 5.
    Albrecht, A.J.: Measuring Application Development Productivity. In: Proc. Joint SHARE/GUIDE/IBM Application Development Symposium, pp. 83–92 (1979)Google Scholar
  6. 6.
    Angelis, L., Stamelos, I., Morisio, M.: Building a Cost Estimation Model Based on Categorical Data. In: 7th IEEE Int. Software Metrics Symposium (METRICS 2001), London (April 2001)Google Scholar
  7. 7.
    Boehm, B.W.: Software Engineering Economics, p. 487. Prentice-Hall, Englewood Cliffs (1981)zbMATHGoogle Scholar
  8. 8.
    Boehm, B.W., Horowitz, E., Madachy, R., Reifer, D., Bradford, K.C., Steece, B., Brown, A.W., Chulani, S., Abts, C.: Software Cost Estimation with COCOMO II. Prentice Hall, New Jersey (2000)Google Scholar
  9. 9.
    Briand, L.C., El Emam, K., Maxwell, K., Surmann, D., Wieczorek, I.: An Assessment and Comparison of Common Software Cost Estimation Models. In: Proc. of the 21st Intern. Conference on Software Engineering, ICSE 1999, Los Angeles, USA, pp. 313–322 (1999)Google Scholar
  10. 10.
    Briand, L.C., Langley, T., Wieczorek, I.: A Replicated Assessment and Comparison of Software Cost Modeling Techniques. In: Proc. of the 22nd Intern. Conf. on Software Engineering, ICSE 2000, Limerick, Ireland, pp. 377–386 (2000)Google Scholar
  11. 11.
    Buglione, L., Gencel, C.: Impact of Base Functional Component Types on Software Functional Size based Effort Estimation. In: Jedlitschka, A., Salo, O. (eds.) PROFES 2008. LNCS, vol. 5089, pp. 75–89. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    CESMM - Civil Engineering Standard Method of Measurement, 3rd edn. Thomas Telford Ltd. (1991)Google Scholar
  13. 13.
    Chen, W.F., Liew, J.Y.R.: The Civil Engineering Handbook, 2nd edn. CRC Press, Boca Raton (2003)Google Scholar
  14. 14.
    COSMIC. COSMIC- v.3.0, Measurement Manual (September 2007)Google Scholar
  15. 15.
    COSMIC: The Common Software Measurement International Consortium FFP, version 3.0, Measurement Manual (2007)Google Scholar
  16. 16.
    Forselius, P.: Benchmarking Software-Development Productivity. IEEE Software 17(1), 80–88 (2000)CrossRefGoogle Scholar
  17. 17.
    Gencel, C., Buglione, L.: Do Different Functionality Types Affect the Relationship between Software Functional Size and Effort? In: Cuadrado-Gallego, J.J., et al. (eds.) IWSM-Mensura 2007. LNCS, vol. 4895, pp. 72–85. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Gencel, C., Demirors, O.: Functional Size Measurement Revisited. ACM Transactions on Software Engineering and Methodology (TOSEM) 17(3), 71–106 (2008)CrossRefGoogle Scholar
  19. 19.
    Hastings, T.E., Sajeev, A.S.M.: A Vector-Based Approach to Software Size Measurement and Effort Estimation. IEEE Transactions on Software Engineering 27(4), 337–350 (2001)CrossRefGoogle Scholar
  20. 20.
    IFPUG. Function Points Counting Practices Manual (release 4.2), International Function Point Users Group, Westerville, Ohio (January 2004)Google Scholar
  21. 21.
    ISBSG Dataset 10 (2007), http://www.isbsg.org
  22. 22.
    ISO/IEC 14143-1: Information Technology – Software Measurement – Functional Size Measurement – Part 1: Definition of Concepts (1998)Google Scholar
  23. 23.
    ISO/IEC 14143-1: Information Technology – Software Measurement – Functional Size Measurement – Part 1: Definition of Concepts (February 2007)Google Scholar
  24. 24.
    ISO/IEC 14143-2: Information Technology – Software Measurement – Functional Size Measurement - Part 2: Conformity Evaluation of Software Size Measurement Methods to ISO/IEC 14143-1:1998 (2002)Google Scholar
  25. 25.
    ISO/IEC 14143-6: Guide for Use of ISO/IEC 14143 and related International Standards (2006)Google Scholar
  26. 26.
    ISO/IEC 19761:2003, Software Engineering – COSMIC-FFP: A Functional Size Measurement Method, International Organization for Standardization (2003)Google Scholar
  27. 27.
    ISO/IEC 20926:2003, Software Engineering-IFPUG 4.1 Unadjusted Functional Size Measurement Method - Counting Practices Manual, International Organization for Standardization (2003)Google Scholar
  28. 28.
    ISO/IEC 20968:2002, Software Engineering – MK II Function Point Analysis – Counting Practices Manual, International Organization for Standardization (2002)Google Scholar
  29. 29.
    ISO/IEC 24570:2005, Software Engineering – NESMA functional size measurement method version 2.1 – Definitions and counting guidelines for the application of Function Point Analysis, International Organization for Standardization (2005)Google Scholar
  30. 30.
    ISO/IEC 29881:2008, Software Engineering – FiSMA functional size measurement method version 1.1, International Organization for Standardization (2008)Google Scholar
  31. 31.
    ISO/IEC TR 14143-3: Information Technology – Software Measurement – Functional Size Measurement – Part 3: Verification of Functional Size Measurement Methods (2003) Google Scholar
  32. 32.
    ISO/IEC TR 14143-4: Information Technology – Software Measurement – Functional Size Measurement - Part 4: Reference Model (2002) Google Scholar
  33. 33.
    ISO/IEC TR 14143-5: Information Technology – Software Measurement – Functional Size Measurement – Part 5: Determination of Functional Domains for Use with Functional Size Measurement (2004) Google Scholar
  34. 34.
    Jeffery, R., Ruhe, M., Wieczorek, I.A.: Comparative Study of Two Software Development Cost Modeling Techniques using Multi-organizational and Company-specific Data. Information and Software Technology 42, 1009–1016 (2000)CrossRefGoogle Scholar
  35. 35.
    Jorgensen, M., Molokken-Ostvold, K.: Reasons for Software Effort Estimation Error: Impact of Respondent Role, Information Collection Approach, and Data Analysis Method. IEEE Transactions on Software Engineering 30(12), 993–1007 (2004)CrossRefGoogle Scholar
  36. 36.
    Kitchenham, B., Mendes, E.: Software Productivity Measurement Using Multiple Size Measures. IEEE Transactions on Software Engineering 30(12), 1023–1035 (2004)CrossRefGoogle Scholar
  37. 37.
    Kitchenham, B., Pfleeger, S.L., Fenton, N.: Toward a Framework for Software Measurement Validation. IEEE Transactions on Software Engineering 21(12) (December 1995)Google Scholar
  38. 38.
    Maya, M., Abran, A., Oligny, S., St-Pierre, D., Desharnais, J.M.: Measuring the Functional Size of Real-Time Software. In: Proc. of 1998 European Software Control and Metrics Conference, Maastricht, The Netherlands, pp. 191–199 (1998)Google Scholar
  39. 39.
    Menzies, T., Chen, Z., Hihn, J., Lum, K.: Selecting Best Practices for Effort Estimation. IEEE Transactions on Software Engineering 32(11), 883–895 (2006)CrossRefGoogle Scholar
  40. 40.
    Morasca, S., Russo, G.: An Empirical Study of Software Productivity. In: Proc. of the 25th Intern. Computer Software and Applications Conf. on Invigorating Software Development, pp. 317–322 (2001)Google Scholar
  41. 41.
    NESMA. Definitions and Counting Guidelines for the Application of Function Point Analysis, v.2.0 (1997)Google Scholar
  42. 42.
    Premraj, R., Shepperd, M.J., Kitchenham, B., Forselius, P.: An Empirical Analysis of Software Productivity over Time. In: 11th IEEE International Symposium on Software Metrics (Metrics 2005), p. 37. IEEE Computer Society, Los Alamitos (2005)CrossRefGoogle Scholar
  43. 43.
    Symons, C.: Come Back Function Point Analysis (Modernized) – All is Forgiven!). In: Proc. of the 4th European Conference on Software Measurement and ICT Control, FESMA-DASMA 2001, Germany, pp. 413–426 (2001)Google Scholar
  44. 44.
    Symons, C.: Function Point Analysis: Difficulties and Improvements. IEEE Transactions on Software Engineering 14(1), 2–11 (1988)CrossRefGoogle Scholar
  45. 45.
    UKSMA. MkII Function Point Analysis Counting Practices Manual, v 1.3.1 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Cigdem Gencel
    • 1
  1. 1.Department of Systems and Software EngineeringBlekinge Institute of TechnologyRonnebySweden

Personalised recommendations