Universe Detectors for Sybil Defense in Ad Hoc Wireless Networks

  • Adnan Vora
  • Mikhail Nesterenko
  • Sébastien Tixeuil
  • Sylvie Delaët
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5340)


The Sybil attack in unknown port networks such as wireless is not considered tractable. A wireless node is not capable of independently differentiating the universe of real nodes from the universe of arbitrary non-existent fictitious nodes created by the attacker. Similar to failure detectors, we propose to use universe detectors to help nodes determine which universe is real. In this paper, we (i) define several variants of the neighborhood discovery problem under Sybil attack (ii) propose a set of matching universe detectors (iii) demonstrate the necessity of additional topological constraints for the problems to be solvable: node density and communication range; (iv) present \(\cal SAND\) — an algorithm that solves these problems with the help of appropriate universe detectors, this solution demonstrates that the proposed universe detectors are the weakest detectors possible for each problem.


Sensor Network Wireless Sensor Network Receive Signal Strength Failure Detector Liveness Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Douceur, J.: The sybil attack. In: IPTPS, Cambridge, MA, March 2002, vol. 1, pp. 251–260 (2002)Google Scholar
  2. 2.
    Wood, A., Stankovic, J.: Denial of service in sensor networks. IEEE Computer 35(10), 54–62 (2002)CrossRefGoogle Scholar
  3. 3.
    Karlof, C., Wagner, D.: Secure routing in wireless sensor networks: attacks and countermeasures. Ad Hoc Networks 1(2-3), 293–315 (2003)CrossRefGoogle Scholar
  4. 4.
    Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Transactions on Programming Languages and Systems 4(3), 382–401 (1982)CrossRefzbMATHGoogle Scholar
  5. 5.
    Deng, J., Han, R., Mishra, S.: Security support for in-network processing in wireless sensor networks. In: SASN, pp. 83–93 (October 2003)Google Scholar
  6. 6.
    Martucci, L., Kohlweiss, M., Andersson, C., Panchenko, A.: Self-certified sybil-free pseudonyms. In: The first ACM conference on Wireless network security WiSec, pp. 154–159. ACM, New York (2008)CrossRefGoogle Scholar
  7. 7.
    Parno, B., Perrig, A., Gligor, V.: Distributed detection of node replication attacks in sensor networks. In: IEEE Symposium on Security and Privacy, pp. 49–63 (May 2005)Google Scholar
  8. 8.
    Theodorakopoulos, G., Baras, J.: On trust models and trust evaluation metrics for ad hoc networks. IEEE Journal on Selected Areas in Communications 24(2), 318–328 (2006)CrossRefGoogle Scholar
  9. 9.
    Yang, H., Ye, F., Yuan, Y., Lu, S., Arbaugh, W.: Toward resilient security in wireless sensor networks. In: MobiHoc, pp. 34–45 (May 2005)Google Scholar
  10. 10.
    Zhang, Q., Wang, P., Reeves, D., Ning, P.: Defending against sybil attacks in sensor networks. In: Second International Workshop on Security in Distributed Computing Systems, pp. 185–191 (June 2005)Google Scholar
  11. 11.
    Zhu, S., Setia, S., Jajodia, S.: LEAP - efficient security mechanisms for large-scale distributed sensor networks. In: SenSys., pp. 308–309 (November 2003)Google Scholar
  12. 12.
    Buchegger, S., Boudec, J.L.: A robust reputation system for mobile ad-hoc. Technical Report EPFL-IC-LCA-50, EPFL, Lausanne, Switzerland (November 11, 2003)Google Scholar
  13. 13.
    Cheng, A., Friedman, E.: Sybilproof reputation mechanisms. In: P2PENCON, pp. 128–132 (2005)Google Scholar
  14. 14.
    Jelasity, M., Montresor, A., Babaoglu, O.: Towards secure epidemics: Detection and removal of malicious peers in epidemic-style protocols. Technical Report UBLCS-2003-14, University of Bologna (December 11, 2003)Google Scholar
  15. 15.
    Newsome, J., Shi, E., Song, D., Perrig, A.: The sybil attack in sensor networks: analysis and defenses. In: IPSN, pp. 259–268 (April 2004)Google Scholar
  16. 16.
    Shi, E., Perrig, A.: Designing secure sensor networks. IEEE Wireless Communications 11(6) (December 2004)Google Scholar
  17. 17.
    Demirbas, M., Song, Y.: An RSSI-based scheme for sybil attack detection in wireless sensor networks. In: WOWMOM, pp. 564–570 (June 2006)Google Scholar
  18. 18.
    Capkun, S., Hubaux, J.P.: Secure positioning in wireless networks. IEEE Journal on Selected Areas in Communications 24(2), 221–232 (2006)CrossRefGoogle Scholar
  19. 19.
    Kindberg, T., Zhang, K.: Validating and securing spontaneous associations between wireless devices. In: ISW: International Workshop on Information Security, Bristol, UK, pp. 44–53 (October 2003)Google Scholar
  20. 20.
    Lazos, L., Poovendran, R., Čapkun, S.: ROPE: Robust position estimation in wireless sensor networks. In: IPSN, Los Angeles, CA, pp. 324–331 (April 2005)Google Scholar
  21. 21.
    Sastry, N., Shankar, U., Wagner, D.: Secure verification of location claims. In: Proceedings of the ACM workshop on Wireless security, San Diego, CA, pp. 1–10 (2003)Google Scholar
  22. 22.
    Vora, A., Nesterenko, M.: Secure location verification using radio broadcast. IEEE Transactions on Dependable and Secure Computing 3(4), 369–383 (2006)CrossRefzbMATHGoogle Scholar
  23. 23.
    Delat, S., Mandal, P.S., Rokicki, M., Tixeuil, S.: Deterministic Secure Positioning in Wireless Sensor Networks. In: DCOSS (June 2008) (to appear)Google Scholar
  24. 24.
    Hwang, J., He, T., Kim, Y.: Detecting phantom nodes in wireless sensor networks. In: 26th IEEE Conference on Computer Communications InfoCom, pp. 2391–2395 (2007)Google Scholar
  25. 25.
    Nesterenko, M., Tixeuil, S.: Discovering network topology in the presence of byzantine faults. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 212–226. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Zhou, G., He, T., Krishnamurthy, S., Stankovic, J.: Impact of radio irregularity on wireless sensor networks. In: The 2nd International Conference on Mobile Systems, Applications, and Services MobiSys, pp. 125–138 (June 2004)Google Scholar
  27. 27.
    Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems. Communications of the ACM 43(2), 225–267 (1996)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Chandra, T., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving consensus. Journal of the ACM 43(4), 685–722 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Rappaport, T.: Wireless communications - Principles and Practice. Prentice-Hall, Englewood Cliffs (2002)zbMATHGoogle Scholar
  30. 30.
    Vora, A., Nesterenko, M., Tixeuil, S., Delaet, S.: Universe detectors for sybil defense in ad hoc wireless networks. Technical Report No 6529, INRIA (May 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Adnan Vora
    • 1
  • Mikhail Nesterenko
    • 1
  • Sébastien Tixeuil
    • 2
  • Sylvie Delaët
    • 3
  1. 1.Kent State UniversityUSA
  2. 2.Université Pierre et Marie CurieParis 6France
  3. 3.Université Paris Sud 11France

Personalised recommendations