DISH: Distributed Self-Healing

(In Unattended Sensor Networks)
  • Di Ma
  • Gene Tsudik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5340)


Unattended wireless sensor networks (UWSNs) operating in hostile environments face the risk of compromise. Unable to off-load collected data to a sink or some other trusted external entity, sensors must protect themselves by attempting to mitigate potential compromise and safeguarding their data. In this paper, we focus on techniques that allow unattended sensors to recover from intrusions by soliciting help from peer sensors. We define a realistic adversarial model and show how certain simple defense methods can result in sensors re-gaining secrecy and authenticity of collected data, despite adversary’s efforts to the contrary. We present an extensive analysis and a set of simulation results that support our observations and demonstrate the effectiveness of proposed techniques.


Sensor Network Encrypt Data Forward Secrecy Bandwidth Overhead True Random Number Generator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ma, D., Tsudik, G.: Forward-secure sequentical aggregate authentication. In: IEEE Symposium on Security and Privacy 2007 (May 2007)Google Scholar
  2. 2.
    Pietro, R.D., et al.: Catch me (if you can): data survival in unattended sensor networks. In: IEEE PERCOM 2008 (2008)Google Scholar
  3. 3.
    Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks. In: ACM PODC 1991, Montreal, Quebec, Canada, August 19-21 (1991)Google Scholar
  4. 4.
    Herzberg, A., Jakobsson, M., Jarecki, S., Krawczyk, H., Yung, M.: Proactive public key and signature systems. In: ACM CCS 1997 (1997)Google Scholar
  5. 5.
    Frankel, Y., Gemmel, P., MacKenzie, P., Yung, M.: Proactive rsa. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 440–454. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Itkis, G., Reyzin, L.: Sibir: signer-base intrusion-resilient signatures. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442. Springer, Heidelberg (2002)Google Scholar
  7. 7.
    Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332. Springer, Heidelberg (2002)Google Scholar
  8. 8.
    Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Ma, D., Tsudik, G.: DISH: Distributed Self-Healing (in Unattended Sensor Networks). Cryptology ePrint Archive, Report 2008/158 (2008)Google Scholar
  10. 10.
    Shoup, V.: OAEP reconsidered. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Dodis, Y., Franklin, M., Katz, J., Miyaji, A., Yung, M.: Intrusion-resilient public-key encryption. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Dodis, Y., Franklin, M., Katz, J., Miyaji, A., Yung, M.: A generic construction for intrusion-resilient public-key encryption. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Di Ma
    • 1
  • Gene Tsudik
    • 1
  1. 1.Computer Science DepartmentUniversity of CaliforniaIrvineUSA

Personalised recommendations