Advertisement

Duty Cycle Stabilization in Semi-mobile Wireless Networks

  • Jing Li
  • Anish Arora
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5340)

Abstract

Coordinating the duty cycles of nodes in low power wireless networks raises challenging stabilization issues. In this paper, we show how to maintain duty-cycle coordination across the partitions of a static network of nodes. The idea is to synchronize the wakeup times of the nodes based on information carried by mobile “token” nodes between the otherwise disconnected partitions; the stabilization challenge is to deal with the corruption of state in both the static nodes and the mobile tokens. Our basic protocol assumes zero or more token nodes traversing disconnected static nodes in a circular order without overtaking each other. Refinements of our protocol accommodate richer patterns of token traversal and speeds.

Keywords

Sensor Node Wireless Sensor Network Duty Cycle Leader Election Node Beacon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Herman, T., Zhang, C.: Best Paper: Stabilizing Clock Synchronization for Wireless Sensor Networks. In: SSS 2006, pp. 335–349 (2006)Google Scholar
  2. 2.
    Gouda, M.G., Choi, Y.-r., Arora, A.: Sentries and Sleepers in Sensor Networks. In: OPODIS 2004, pp. 384–399 (2004)Google Scholar
  3. 3.
    Widder, J., Schmid, U.: Booting clock synchronization in partially synchronous systems with hybrid process and link failures. Distributed Computing 20(2), 115–140 (2007)CrossRefzbMATHGoogle Scholar
  4. 4.
    Datta, A.K., Gradinariu, M., Raynal, M.: Stabilizing mobile philosophers. Inf. Process. Lett. 95(1), 299–306 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dolev, S., Lahiani, L., Lynch, N.A., Nolte, T.: Self-stabilizing Mobile Node Location Management and Message Routing. Self-Stabilizing Systems, 96–112 (2005)Google Scholar
  6. 6.
    Demirbas, M., Soysal, O., Tosun, A.S.: Data Salmon: A Greedy Mobile Basestation Protocol for Efficient Data Collection in Wireless Sensor Networks. In: DCOSS 2007, pp. 267–280 (2007)Google Scholar
  7. 7.
    Cao, H., Parker, K.W., Arora, A.: O-MAC: a receiver centric power management protocol. In: ICNP 2006 (2006)Google Scholar
  8. 8.
    Cao, H., Arora, A., Parker, K.W., Lai, T.H.: Continuous Asynchronous Discovery with Efficient Synchronous Communication for Mobile Networks. 12 pp. OSU-CSE Technical Report OSU-CISRC-4/07–TR34 (2007)Google Scholar
  9. 9.
    Ye, W., Heidemann, J., Estrin, D.: An energy-efficient MAC protocol for wireless sensor networks. In: INFOCOM 2002 (2002)Google Scholar
  10. 10.
    van Dam, T., Langendoen, K.: An adaptive energy-efficient mac protocol for wireless sensor networks. In: SenSys 2003, pp. 171–180 (2003)Google Scholar
  11. 11.
    Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor networks. In: SenSys 2004 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jing Li
    • 1
  • Anish Arora
    • 1
  1. 1.Department of Computer Science and EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations