Skip to main content

Self-stabilizing Mobile Robot Formations with Virtual Nodes

  • Conference paper
Stabilization, Safety, and Security of Distributed Systems (SSS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5340))

Included in the following conference series:

Abstract

In this paper, we describe how virtual infrastructure can be used to coordinate the motion of mobile robots in a 2-dimensional plane in the presence of dynamic changes in the underlying mobile ad hoc network, i.e., nodes joining, leaving, or failing. The mobile robots cooperate to implement a VSA Layer, in which a virtual stationary automaton (VSA) is associated with each region of the plane. The VSAs coordinate among themselves to distribute the robots as needed throughout the plane. The resulting motion coordination protocol is self-stabilizing, in that each robot can begin the execution in any arbitrary state and at any arbitrary location in the plane. In addition, self-stabilization ensures that the robots can adapt to changes in the desired formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dolev, S., Gilbert, S., Lahiani, L., Lynch, N.A., Nolte, T.A.: Virtual stationary automata for mobile networks. Technical Report MIT-LCS-TR-979 (2005)

    Google Scholar 

  2. Dolev, S., Gilbert, S., Lynch, N., Shvartsman, A., Welch, J.: Geoquorums: Implementing atomic memory in ad hoc networks. In: Fich, F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 306–320. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Dolev, S., Gilbert, S., Lynch, N.A., Shvartsman, A.A., Welch, J.: Geoquorums: Implementing atomic memory in mobile ad hoc networks. Distributed Computing (2005)

    Google Scholar 

  4. Chockler, G., Gilbert, S., Lynch, N.: Virtual infrastructure for collision-prone wireless networks. In: Proceedings of PODC (to appear, 2008)

    Google Scholar 

  5. Nolte, T., Lynch, N.A.: A virtual node-based tracking algorithm for mobile networks. In: ICDCS (2007)

    Google Scholar 

  6. Dolev, S., Gilbert, S., Lahiani, L., Lynch, N., Nolte, T.: Virtual stationary automata for mobile networks. In: OPODIS (2005)

    Google Scholar 

  7. Nolte, T., Lynch, N.A.: Self-stabilization and virtual node layer emulations. In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 394–408. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O Automata. Synthesis Lectures on Computer Science. Morgan Claypool, San Francisco (2005)

    MATH  Google Scholar 

  9. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. on Automatic Control 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  10. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Trans. on Robotics and Automation 15(5), 818–828 (1999)

    Article  Google Scholar 

  11. Lin, J., Morse, A., Anderson, B.: Multi-agent rendezvous problem. In: IEEE CDC 2003 (2003)

    Google Scholar 

  12. Martinez, S., Cortes, J., Bullo, F.: On robust rendezvous for mobile autonomous agents. In: IFAC World Congress (2005)

    Google Scholar 

  13. Gazi, V., Passino, K.M.: Stability analysis of swarms. IEEE Trans. on Automatic Control 48(4), 692–697 (2003)

    Article  MathSciNet  Google Scholar 

  14. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Trans. on Robotics & Automation 20(2), 243–255 (2004)

    Article  Google Scholar 

  15. Suzuki, I., Yamashita, M.: Distributed autonomous mobile robots: Formation of geometric patterns. SIAM Journal of computing 28(4), 1347–1363 (1999)

    Article  MATH  Google Scholar 

  16. Fax, J., Murray, R.: Information flow and cooperative control of vehicle formations. IEEE Trans. on Automatic Control 49, 1465–1476 (2004)

    Article  MathSciNet  Google Scholar 

  17. Clavaski, S., Chaves, M., Day, R., Nag, P., Williams, A., Zhang, W.: Vehicle networks: achieving regular formation. In: ACC (2003)

    Google Scholar 

  18. Blondel, V., Hendrickx, J., Olshevsky, A., Tsitsiklis, J.: Convergence in multiagent coordination consensus and flocking. In: IEEE CDC-ECC 2005, pp. 2996–3000 (2005)

    Google Scholar 

  19. Olfati-Saber, R., Fax, J., Murray, R.: Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE 95(1), 215–233 (2007)

    Article  Google Scholar 

  20. Prencipe, G.: Corda: Distributed coordination of a set of autonomous mobile robots. In: ERSADS, pp. 185–190 (May 2001)

    Google Scholar 

  21. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Pattern formation by autonomous robots without chirality. In: SIROCCO, 147–162 (June 2001)

    Google Scholar 

  22. Efrima, A., Peleg, D.: Distributed models and algorithms for mobile robot systems. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 70–87. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Prencipe, G.: Achievable patterns by an even number of autonomous mobile robots. Technical Report TR-00-11 (2000)

    Google Scholar 

  24. Lynch, N., Mitra, S., Nolte, T.: Motion coordination using virtual nodes. In: IEEE CDC 2005 (December 2005)

    Google Scholar 

  25. Brown, M.D.: Air traffic control using virtual stationary automata. Master’s thesis, MIT (September 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gilbert, S., Lynch, N., Mitra, S., Nolte, T. (2008). Self-stabilizing Mobile Robot Formations with Virtual Nodes. In: Kulkarni, S., Schiper, A. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2008. Lecture Notes in Computer Science, vol 5340. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89335-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89335-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89334-9

  • Online ISBN: 978-3-540-89335-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics