Skip to main content

Convergence Time Analysis of Self-stabilizing Algorithms in Wireless Sensor Networks with Unreliable Links

  • Conference paper
Stabilization, Safety, and Security of Distributed Systems (SSS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5340))

Included in the following conference series:

Abstract

Wireless sensor network is a set of many tiny sensor nodes each of which consists of a microprocessor with sensors and wireless communication device. Because centralized control is hard to achieve in a large scale sensor network, self-∗ is a key concept to design such a network. In this paper, as one of self-∗ properties, we investigate self-stabilization algorithms which is a promising theoretical background for wireless sensor network protocols. T. Herman [Procs. International Workshop of Distributed Computing, 2003] proposed a transformation scheme of self-stabilizing algorithm in abstract computational model to sensor network model. However, it is not known that whether expected convergence time of transformed algorithms is finite or not. We show upper bound of expected convergence time of some self-stabilizing algorithms in explicit formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dijkstra, E.: Self-stabilizing systems in spite of distributed control. Communications of the ACM 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  2. Schneider, M.: Self-stabilization. ACM Computing Surveys 25(1), 45–67 (1993)

    Article  Google Scholar 

  3. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Mizuno, M., Kakugawa, H.: A transformation of self-stabilizing programs for distributed computing environments. In: Babaoğlu, Ö., Marzullo, K. (eds.) WDAG 1996. LNCS, vol. 1151, pp. 304–321. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  5. Huang, S.T., Wuu, L.C., Tsai, M.S.: Distributed execution model for self-stabilizing systems. In: Proceedings of the 14th International Conference on Distributed Computing Systems (ICDCS), pp. 432–439 (1994)

    Google Scholar 

  6. Herman, T.: Models of self-stabilization and sensor networks. In: IWDC 2003. LNCS, vol. 2918, pp. 205–214. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Turau, V., Weyer, C.: Randomized self-stabilizing algorithms for wireless sensor networks. In: de Meer, H., Sterbenz, J.P.G. (eds.) IWSOS 2006. LNCS, vol. 4124, pp. 74–89. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Szpankowski, W., Rego, V.: Yet another application of a binomial recurrence, order statistics. Computing 43, 401–410 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gouda, M.: The triumph and tribulation of system stabilization. In: Helary, J.-M., Raynal, M. (eds.) WDAG 1995. LNCS, vol. 972. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  10. Huang, S.T., Chen, N.S.: A self-stabilizing algorithm for constructing breadth-first trees. Information Processing Letters 41, 109–117 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Shukla, S., Rosenkrantz, D., Ravi, S.: Observation on self-stabilizing graph algorithms for anonymous networks. In: Proceedings of the Second Workshop on Self-Stabilizing Systems, WSS (1995)

    Google Scholar 

  12. Ikeda, M., Kamei, S., Kakugawa, H.: A space-optimal self-stabilizing algorithm for the maximal independent set problem. In: Proceedings of the 3rd International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), pp. 70–74 (2002)

    Google Scholar 

  13. Kamei, S., Kakugawa, H.: A self-stabilizing distributed approximation algorithm for the minimum connected dominating set. In: Proceedings of the 9th IPDPS Workshop on Advances in Parallel and Distributed Computational Models, APDCM (2007)

    Google Scholar 

  14. Turau, V.: Linear self-stabilizing algorithms for the independent and dominating set problems using an unfair distributed scheduler. Information Processing Letters 103(3), 88–93 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, N.S., Yu, H.P., Huang, S.T.: A self-stabilizing algorithm for constructing spanning trees. Information Processing Letters 39, 147–151 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kakugawa, H., Masuzawa, T. (2008). Convergence Time Analysis of Self-stabilizing Algorithms in Wireless Sensor Networks with Unreliable Links. In: Kulkarni, S., Schiper, A. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2008. Lecture Notes in Computer Science, vol 5340. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89335-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89335-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89334-9

  • Online ISBN: 978-3-540-89335-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics