Local Synchronization on Oriented Rings

  • Doina Bein
  • Ajoy K. Datta
  • Chitwan K. Gupta
  • Lawrence L. Larmore
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5340)


We consider the local mutual exclusion (LME) problem on a ring network. We present two self-stabilizing distributed algorithms, with local mutual exclusion, for the dining philosophers problem on a bidirectional oriented ring with two distinguished processes. The first algorithm, which uses the composite atomicity model, works under an unfair distributed daemon. The second algorithm, which uses the read-write atomicity model, works under a weakly fair daemon. Both algorithms use at most two extra bits per process to enforce local mutual exclusion. Both algorithms are derived from a simpler algorithm using transformations which can be applied to other algorithms on the ring. The technique can be generalized to more complex topologies.


Local mutual exclusion transformer oriented ring self-stabilization synchronization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nesterenko, M., Arora, A.: Stabilization-Preserving Atomicity Refinement. Journal of Parallel and Distributed Computing 62, 766–791 (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Dijkstra, E.W.: Hierarchical Ordering of Sequential Processes. Acta Informatica 1, 115–138 (1971)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dijkstra, E.W.: Self Stabilizing Systems in Spite of Distributed Control. Communications of ACM 17, 643–644 (1974)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dolev, S., Israeli, A., Moran, S.: Self-stabilization of Dynamic Dystems Dssuming Dnly Dead/write Dtomicity. Distributed Computing 7, 3–16 (1993)CrossRefGoogle Scholar
  5. 5.
    Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  6. 6.
    Gouda, M.G.: The Stabilizing Philospher: Asymmetry by Memory and by Action. Tech. Report TR-87-12. University of Texas at Austin (1987)Google Scholar
  7. 7.
    Gouda, M.G., Haddix, F.F.: The Linear Alternator. In: Proceedings of the 3rd Workshop on Self-stabilizing Systems, pp. 31–47. Carleton University Press (1997)Google Scholar
  8. 8.
    Gouda, M.G., Haddix, F.F.: The Alternator. Distributed Computing 20, 21–28 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Huang, S.T.: The fuzzy philosophers. In: Rolim, J.D.P. (ed.) IPDPS-WS 2000. LNCS, vol. 1800, pp. 130–136. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Hoover, D., Poole, J.: A Distributed Self-stabilizing Solution For the Dining Philosophers Problem. IPL 41, 209–213 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Doina Bein
    • 1
  • Ajoy K. Datta
    • 2
  • Chitwan K. Gupta
    • 2
  • Lawrence L. Larmore
    • 2
  1. 1.University of Texas at DallasUSA
  2. 2.University of NevadaLas VegasUSA

Personalised recommendations