Advertisement

Local Synchronization on Oriented Rings

  • Doina Bein
  • Ajoy K. Datta
  • Chitwan K. Gupta
  • Lawrence L. Larmore
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5340)

Abstract

We consider the local mutual exclusion (LME) problem on a ring network. We present two self-stabilizing distributed algorithms, with local mutual exclusion, for the dining philosophers problem on a bidirectional oriented ring with two distinguished processes. The first algorithm, which uses the composite atomicity model, works under an unfair distributed daemon. The second algorithm, which uses the read-write atomicity model, works under a weakly fair daemon. Both algorithms use at most two extra bits per process to enforce local mutual exclusion. Both algorithms are derived from a simpler algorithm using transformations which can be applied to other algorithms on the ring. The technique can be generalized to more complex topologies.

Keywords

Local mutual exclusion transformer oriented ring self-stabilization synchronization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nesterenko, M., Arora, A.: Stabilization-Preserving Atomicity Refinement. Journal of Parallel and Distributed Computing 62, 766–791 (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Dijkstra, E.W.: Hierarchical Ordering of Sequential Processes. Acta Informatica 1, 115–138 (1971)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dijkstra, E.W.: Self Stabilizing Systems in Spite of Distributed Control. Communications of ACM 17, 643–644 (1974)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dolev, S., Israeli, A., Moran, S.: Self-stabilization of Dynamic Dystems Dssuming Dnly Dead/write Dtomicity. Distributed Computing 7, 3–16 (1993)CrossRefGoogle Scholar
  5. 5.
    Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  6. 6.
    Gouda, M.G.: The Stabilizing Philospher: Asymmetry by Memory and by Action. Tech. Report TR-87-12. University of Texas at Austin (1987)Google Scholar
  7. 7.
    Gouda, M.G., Haddix, F.F.: The Linear Alternator. In: Proceedings of the 3rd Workshop on Self-stabilizing Systems, pp. 31–47. Carleton University Press (1997)Google Scholar
  8. 8.
    Gouda, M.G., Haddix, F.F.: The Alternator. Distributed Computing 20, 21–28 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Huang, S.T.: The fuzzy philosophers. In: Rolim, J.D.P. (ed.) IPDPS-WS 2000. LNCS, vol. 1800, pp. 130–136. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Hoover, D., Poole, J.: A Distributed Self-stabilizing Solution For the Dining Philosophers Problem. IPL 41, 209–213 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Doina Bein
    • 1
  • Ajoy K. Datta
    • 2
  • Chitwan K. Gupta
    • 2
  • Lawrence L. Larmore
    • 2
  1. 1.University of Texas at DallasUSA
  2. 2.University of NevadaLas VegasUSA

Personalised recommendations