Self-Stabilizing Leader Election in Optimal Space

  • Ajoy K. Datta
  • Lawrence L. Larmore
  • Priyanka Vemula
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5340)


A silent self-stabilizing asynchronous distributed algorithm, SSLE, for the leader election problem, in a connected unoriented network with unique IDs, is given. SSLE uses O(logn) space per process and stabilizes in O(n) rounds, where n is the number of processes in the network.


Distributed algorithm leader election self-stabilization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Afek, Y., Bremler, A.: Self-Stabilizing Unidirectional Network Algorithms by Power-Supply. In: 8th Annual ACM Symposium on Discrete Algorithms, pp. 111–120 (1997)Google Scholar
  2. 2.
    Arora, A., Gouda, M.G.: Distributed Reset. IEEE Transactions on Computers 43, 1026–1038 (1994)CrossRefzbMATHGoogle Scholar
  3. 3.
    Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time Optimal Self-stabilizing Synchronization. In: 25th Annual ACM Symposium on Theory of Computing, pp. 652–661 (1993)Google Scholar
  4. 4.
    Dijkstra, E.W.: Self-stabilizing Systems in Spite of Distributed Control. Communications of the Association for Computing Machinery 17, 643–644 (1974)CrossRefzbMATHGoogle Scholar
  5. 5.
    Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  6. 6.
    Dolev, S., Herman, T.: Superstabilizing Protocols for Dynamic Distributed Systems. Chicago J. Theor. Comput. Sci.  1997-4, 1–40 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ajoy K. Datta
    • 1
  • Lawrence L. Larmore
    • 1
  • Priyanka Vemula
    • 1
  1. 1.School of Computer ScienceUniversity of NevadaLas VegasUSA

Personalised recommendations