A Self-stabilizing \(\frac{2}{3}\)-Approximation Algorithm for the Maximum Matching Problem

  • Fredrik Manne
  • Morten Mjelde
  • Laurence Pilard
  • Sébastien Tixeuil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5340)


The matching problem asks for a large set of disjoint edges in a graph. It is a problem that has received considerable attention in both the sequential and self-stabilizing literature. Previous work has resulted in self-stabilizing algorithms for computing a maximal (\(\frac{1}{2}\)-approximation) matching in a general graph, as well as computing a \(\frac{2}{3}\)-approximation on more specific graph types. In the following we present the first self-stabilizing algorithm for finding a \(\frac{2}{3}\)-approximation to the maximum matching problem in a general graph. We show that our new algorithm stabilizes in at most exponential time under a distributed adversarial daemon, and O(n 2) rounds under a distributed fair daemon, where n is the number of nodes in the graph.


Self-stabilizing algorithm \(\frac{2}{3}\)-Approximation Maximum matching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blair, J.R.S., Manne, F.: Efficient self-stabilizing algorithms for tree networks. In: ICDCS 2003: Proceedings of the 23rd International Conference on Distributed Computing Systems, Washington, DC, USA, pp. 20–26. IEEE Computer Society Press, Los Alamitos (2003)CrossRefGoogle Scholar
  2. 2.
    Danturi, P., Nesterenko, M., Tixeuil, S.: Self-stabilizing philosophers with generic conflicts. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 214–230. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  5. 5.
    Ghosh, S., Gupta, A., Karaata, M.H., Pemmaraju, S.V.: Self-stabilizing dynamic programming algorithms on trees. In: Proceedings of the Second Workshop on Self-Stabilizing Systems (WSSS 1995), Las Vegas, pp. 11.1–11.15 (1995)Google Scholar
  6. 6.
    Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing protocols for maximal matching and maximal independent sets for ad hoc networks. In: IPDPS 2003: Proceedings of the 17th International Symposium on Parallel and Distributed Processing, Washington, DC, USA, p. 162.2. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  7. 7.
    Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Trevisan, V.: Distance-k knowledge in self-stabilizing algorithms. Theor. Comput. Sci. 399(1-2), 118–127 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Goddard, W., Hedetniemi, S.T., Shi, Z.: An anonymous self-stabilizing algorithm for 1-maximal matching in trees. In: PDPTA 2006: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications & Conference on Real-Time Computing Systems and Applications, vol.  2, pp. 797–803. CSREA Press (2006)Google Scholar
  9. 9.
    Gradinariu, M., Johnen, C.: Self-stabilizing neighborhood unique naming under unfair scheduler. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001, vol. 2150, pp. 458–465. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Gradinariu, M., Tixeuil, S.: Conflict managers for self-stabilization without fairness assumption. In: ICDCS 2007: Proceedings of the International Conference on Distributed Computing Systems. IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  11. 11.
    Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Maximal matching stabilizes in time O(m). Inf. Process. Lett. 80(5), 221–223 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)CrossRefzbMATHGoogle Scholar
  13. 13.
    Hsu, S.-C., Huang, S.-T.: A self-stabilizing algorithm for maximal matching. Inf. Process. Lett. 43(2), 77–81 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A new self-stabilizing maximal matching algorithm. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 96–108. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Tel, G.: Maximal matching stabilizes in quadratic time. Inf. Process. Lett. 49(6), 271–272 (1994)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Fredrik Manne
    • 1
  • Morten Mjelde
    • 1
  • Laurence Pilard
    • 2
  • Sébastien Tixeuil
    • 3
  1. 1.University of BergenNorway
  2. 2.University of Franche ComtéFrance
  3. 3.LIP6 & INRIA Grand LargeUniversité Pierre et Marie CurieParis 6France

Personalised recommendations