Skip to main content

Root Behavior in Response to Aluminum Toxicity

  • Chapter
  • First Online:
Plant-Environment Interactions

Abstract

Roots have an extraordinary capacity for adaptive growth which allows them to avoid toxic soil patches or layers and grow into fertile sites. The response of roots to aluminum toxicity, a widespread problem in acid soils, is an excellent model system for investigating the mechanisms that govern this root behavior. In this review, after a short introduction to root growth movement in response to chemical factors in the soil, we explore the basic mechanisms of Al-induced inhibition of root growth. The actinomyosin network and endocytic vesicle trafficking are highlighted as common targets for Al toxicity in cell types with quite different origins: root tip transition zone cells, tip-growing cells like root hairs or pollen tubes, and astrocytes of the animal or human brain. In the roots of sensitive plants, the perception of toxic Al leads to a change in root tip cell patterning. The disturbance of polar auxin transport by Al seems to be a major factor in these developmental changes. In contrast, Al activates organic acid efflux and the binding of Al in a nontoxic form in Al-resistant genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahad A, Nick P (2007) Actin is bundled in activated-tagged tobacco mutants that tolerate aluminum. Planta 225:451–468

    PubMed  CAS  Google Scholar 

  • Ahn SJ, Sivaguru M, Chung GC, Rengel Z, Matsumoto H (2001) Aluminium-induced growth inhibition is associated with impaired efflux and influx of H+ across the plasma membrane in root apices of squah (Cucurbita pepo). J Exp Bot 53:1959–1966

    Google Scholar 

  • Aida M, Beis D, Heidstra R, Willemsen V, Billou I, Galinha C, Nussaume L, Noh YS, Amsino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120

    PubMed  CAS  Google Scholar 

  • Akeson MA, Munns DN, Burau RG (1989) Adsorption of Al3+ to phosphatidylcholine vesicles. Biochim Biophys Acta 986:33–40

    PubMed  CAS  Google Scholar 

  • Alessa L, Oliveira L (2001) Aluminum toxicity studies in Vaucheria longicaulis var. macouni (Xanthophyta, Tribophyceae). I. Effects on cytoplasmic organization. Environ Exp Bot 45:205–222

    PubMed  CAS  Google Scholar 

  • Alva AK, Asher CJ, Edwards DG (1986) The role of calcium in alleviating aluminum toxicity. Austr J Agric Res 37:375–382

    CAS  Google Scholar 

  • Amenós M (2007) Respuestas primarias a la toxicidad por aluminio en raíces de plantas de maíz con diferente resistencia. Dissertation, Autonomous University of Barcelona

    Google Scholar 

  • Aremu DA, Meshitsuka S (2005) Accumulation of aluminum by primary cultures astrocytes from aluminum amino acid complex and its apoptotic effect. Brain Res 1031:284–296

    PubMed  CAS  Google Scholar 

  • Aremu DA, Meshitsuka S (2006) Some aspects of astroglial functions and aluminum implications for neurodegeneration. Brain Res Rev 52:193–200

    PubMed  CAS  Google Scholar 

  • Baluška F, Volkmann, D, Barlow PW (2000) Actin-based domains of the “cell periphery complex” and their associations with polarized “cell bodies” in higher plants. Plant Biol 2:253–267

    Google Scholar 

  • Baluška F, Cvrcková F, Kendrick-Jones J, Volkmann D (2001a) Sink plasmodesmata as gateways for phloem unloading. Myosin VIII and calreticulin as molecular determinants of sink strength. Plant Physiol 126:39–46

    Google Scholar 

  • Baluška F, Volkmann D, Barlow PW (2001b) A polarity crossroad in the transition growth zone of maize root apices: cytoskeletal and developmental implications. J Plant Growth Regul 20:170–181

    Google Scholar 

  • Baluška F, Mancuso S, Volkmann D, Barlow P (2004) Root apices as plant command canters: the unique “brain-like” status of the root apex transition zone. Biologia 59(Suppl 13):7–19

    Google Scholar 

  • Barceló J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48:75–92

    Google Scholar 

  • Barceló J., Poschenrieder C, Vázquez MD, Gunsé B (1996) Aluminium phytotoxicity: a challenge for plant scientists. Fertil Res 43:217–223

    Google Scholar 

  • Barlow PW (1994) Root movements: towards understanding through models the mechanisms involved. Plant Soil 165:293–300

    CAS  Google Scholar 

  • Barlow PW (2002) Cellular patterning in root meristems: its origin and significance. In: Waisel Y, Eshel A, Kafkafi U(eds)Plant roots: the hidden half, 3rd edn. Marcel Dekker, New York, pp 49–82

    Google Scholar 

  • Benjamin R, Scheres B (2008) The looping star in plant development. Annu Rev Plant Biol 59:443–465

    Google Scholar 

  • Blamey FPC, Asher CJ, Kerven GL, Edwards DG (1993) Factors affecting sorption by calcium pectate. Plant Soil 192:269–275

    Google Scholar 

  • Blamey FPC, Nishizawa NK, Yoshimura E (2004) Timing, magnitude, and location of initial soluble aluminum injuries to mungbean roots. Soil Sci Plant Nutr 50:67–76

    CAS  Google Scholar 

  • Blancaflor BE, Jones DL, Gilroy S (1998) Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize. Plant Physiol 118:159–172

    PubMed  CAS  Google Scholar 

  • Boscolo PRS, Menossi M, Jorge RA (2003) Aluminum-induced oxidative stress in maize. Phytochemistry 62:181–189

    PubMed  CAS  Google Scholar 

  • Bowman JL, Floyd SK (2008) Patterning and polarity in seed plant shoots. Annu Rev Plant Biol 59:67–88

    PubMed  CAS  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminum on lipid peroxidation, superoxide-dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468

    CAS  Google Scholar 

  • Care DA (1995) The effect of aluminium concentration on root hairs in white clover (Trifolium repens L.). Plant Soil 171:159–162

    CAS  Google Scholar 

  • Clarkson DT (1965) The effect of aluminium and some trivalent metal cations on cell division in the root apices of Allium cepa. Ann Bot 29:309–315

    Google Scholar 

  • Collins NC, Shirley NJ, Saeed M, Pallotta M, Gustafson JP (2008) An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.). Genetics 179:669–682

    PubMed  CAS  Google Scholar 

  • Corrales I, Poschenrieder C, Barceló J (2008) Boron-induced amelioration of aluminium toxicity in a monocot and a dicot species. J Plant Physiol 165:504–513

    PubMed  CAS  Google Scholar 

  • de Campos JMS, Viccini LF (2003) Cytotoxicity of aluminum on meristematic cells of Zea mays and Allium cepa. Caryologia 56:65–73

    Google Scholar 

  • De Cnodder T, Vissenberg K, Van der Straeten D, Verbelen JP (2005) Regulation of cell length in the Arabidopsis thaliana root by ethylene precursor 1-aminocyclopropane-1-carboxylic acid: a matter of apoplastic rections. New Phytol 168:541–550

    PubMed  CAS  Google Scholar 

  • Delhaize E, Gruber BD, Ryan PR (2007) The roles of organic anion permeases in aluminium resistance and mineral nutrition. FEBS Lett 581:2255–2262

    PubMed  CAS  Google Scholar 

  • Desnos T (2008) Root branching responses to phosphate and nitrate. Curr Opin Plant Biol 11:82–87

    PubMed  CAS  Google Scholar 

  • Doncheva S, Amenós M, Poschenrieder C, Barceló J (2005) Root cell patterning—a primary target for aluminum toxicity in maize. J Exp Bot 56:1213–1220

    PubMed  CAS  Google Scholar 

  • Dubrovsky JG (1997) Determinate primary-root growth in seedlings of Sonora desert Cactaceae; its organization, cellular basis, and ecological significance. Planta 203:85–92

    CAS  Google Scholar 

  • Dubrovsky JG, Doerner PW, Colón-Carmona A, Rost TL (2000) Pericycle cell proliferation and lateral root initiation in Arabidopsis. Plant Physiol 124:1648–1657

    PubMed  CAS  Google Scholar 

  • Eticha D, Stass A, Horst WJ (2005) Localization of aluminium in the maize root apex: can morin detect cell wall-bound aluminium? J Exp Bot 56:1351–1357

    PubMed  CAS  Google Scholar 

  • Exley C (2004) The pro-oxidant activity of aluminum. Free Radical Biol Med 36:380–387

    CAS  Google Scholar 

  • Fontecha G, Silva-Navas J, Benito C, Mestres MA, Espino FJ, Hernandez-Riquer, MVGallego FJ (2007) Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolertance in rye (Secale cereale L.). Theor Appl Genet 114:249–260

    PubMed  CAS  Google Scholar 

  • Forde B, Lorenzo H (2001) The nutritional control of root development. Plant Soil 232:51–68

    CAS  Google Scholar 

  • Frantzios G, Galatis B, Apostolakos P (2005) Aluminium causes variable responses in actin filament cytoskeleton of the root tip cells of Triticum turgidum. Protoplasma 225:129–140

    PubMed  CAS  Google Scholar 

  • Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma FJ (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091

    PubMed  CAS  Google Scholar 

  • Grabski S, Schindler M (1995) Aluminum induces rigor within the actin network of soybean cells. Plant Phsyiol 108:897–901

    CAS  Google Scholar 

  • Gunsé B, Poschenrieder C, Barceló J (1997) Water transport properties of roots and root cortical cells in proton and Al-stressed maize varieties. Plant Physiol 113:595–602

    PubMed  Google Scholar 

  • Haines, BJ (2002) Zincophilic root foraging in Thlaspi caerulescens. New Phytol 155:363–372

    Google Scholar 

  • Han SC, Tang RH, Anderson LK, Woerner TE, Pei ZM (2003) A cell surface receptor mediates extracellular Ca2+ sensing in guard cells. Nature 425:196–200

    PubMed  CAS  Google Scholar 

  • Hart JW (1990) Plant tropisms and other growth movements. Unwin Hyman, London

    Google Scholar 

  • Hoekenga OA, Maron LG, Piñeros MA, Cancado GMA, Shaff J, Kobayashi Y, Ryan PR, Dong B, DElhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:9738–9743

    PubMed  CAS  Google Scholar 

  • Hofer A (2005) Another dimension to calcium signaling: a look at extracellular calcium. J Cell Sci 118:855–862

    PubMed  CAS  Google Scholar 

  • Horst WJ (1995) The role of the apoplast in aluminium toxicity and resistance of higher plants: a review. Z Pflanzenrnähr Bodenk 158:419–428

    CAS  Google Scholar 

  • Illéš P, Schlicht M, Pavlovkin J, Lichtscheidl I, Baluška F, Ovečka M (2006) Aluminium toxicity in plants: internalization of aluminium into cells of the transition zone in Arabidopsis root apices related to changes in plasma membrane potential, endosomal behaviour, and nitric acid production. J Exp Bot 57:4201–4213

    PubMed  Google Scholar 

  • Ishida T, Kurata T, Okada K, Wada T (2008) A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol 59:365–386

    PubMed  CAS  Google Scholar 

  • Ishikawa H, Evans ML (1992) Induction of curvature in maize roots by calcium or by thigmostimulation. Role of the postmitotic isodiametric growth zone. Plant Physiol 100:762–768

    PubMed  CAS  Google Scholar 

  • Jentschke G, Drexhage M, Fritz HW, Fritz E, Schella B, Lee DH, Heiman J, Kuhr M, Schmidt J, Schmidt S, Zimmermann R, Godbold DL (2001) Does soil acidity reduce subsoil rooting in Norway spruce (Picea abies)? Plant Soil 237:91–108

    CAS  Google Scholar 

  • Jones DL, Kochian LV (1995) Aluminum inhibition of the inositol 1,4,5-triphosphate signal transduction pathway in wheat rots: a role in aluminum toxicity. Plant Cell 7:1913–1922

    PubMed  CAS  Google Scholar 

  • Jones DL, Shaff JE, Kochian LV (1995) Role of calcium and other ions in detecting root hair tip growth in Linnobium stoloniferum. I: Inhibition of tip growth by aluminum. Planta 197:672–680

    CAS  Google Scholar 

  • Jones DL, Blancaflor EB, Kochian LV, Gilroy S (2006) Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots. Plant Cell Environ 29:1309–1318

    PubMed  CAS  Google Scholar 

  • Kataoka, T, Nakanishi TM (2001) Aluminium distribution in soybean root tip for a short time Al treatment. J Plant Physiol 158:731–736

    CAS  Google Scholar 

  • Kawano T, Kadono T, Fumoto K, Lapeyrie F, Kuse M, Isobe M, Furuichi T, Muto S (2004) Aluminium as a specific inhibitor of plant TPC1 Ca2+ channels. Biochem Biophys Res Commu 324:40–45

    CAS  Google Scholar 

  • Kenjebaeva S, Yamamoto Y, Matsumoto H (2001) The impact of aluminium on the distribution off cell wall glycoproteins of pea root tip and their Al binding capcity. Soil Sci Plant Nutr 47:629–63

    CAS  Google Scholar 

  • Kenzhebaeva SS, Yamamoto Y, Matsumoto H (2001) Aluminum-induced changes in cell wall glycoproteins in the root tips of Al-tolerant and Al-sensitive wheat lines. Russ J Plant Physiol 48:441–447

    CAS  Google Scholar 

  • Kidd PS, Llugany M, Poschenrieder C, Gunsé B, Barceló J (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L). J Exp Bot 52:1339–1352

    PubMed  CAS  Google Scholar 

  • Kikui S, Sasaki T, Osawa H, Matsumoto H, Yamamoto Y (2007) Malate enhances recovery from aluminum-caused inhibition of root elongation in wheat. Plant Soil 290:1–15

    CAS  Google Scholar 

  • Kinraide TB (2006) Plasma membrane surface potential (ΨPM) as a determinant of ion bioavailability: a critical analysis of new and published toxicological studies and a simplified method for the computation of plant (ΨPM). Environ Toxicol Chem 25:3188–3198

    PubMed  CAS  Google Scholar 

  • Kinraide TB, Yermiyahu U (2007) A scale of metal ion binding strength correlating with ionic charge, Pauling electronegativity, toxicity, and other physiological effects. J Inorg Biochem 101:1201–1213

    PubMed  CAS  Google Scholar 

  • Kisnierienë V, Sakalauskas V (2005) Al3+ induced membrane potential changes in Nitellopsis obtusa cells. Biologija 1:31–34

    Google Scholar 

  • Kobayashi Y, Hoekenga OA, Itoh H, Nakashima M, Saito S, Shaff JE, Maron LG, Piñeros MA, Kochian LV, Koyama H (2007) Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress in Arabidopsis. Plant Physiol 145:843–852

    PubMed  CAS  Google Scholar 

  • Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance an phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    PubMed  CAS  Google Scholar 

  • Kochian LV, Piñeros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance in plants. Plant Soil 274:175–195

    CAS  Google Scholar 

  • Konishi S, Miyamoto S (1983) Alleviation of aluminum stress and stimulation of tea pollen tube growth by fluorine. Plant Cell Physiol 24:857–862

    CAS  Google Scholar 

  • Kumari M., Taylor GJ, Deyholos MK (2008) Transcription responses to aluminum stress in roots of Arabidopsis thaliana. Mol Genet Genomics 279:339–357

    PubMed  CAS  Google Scholar 

  • Laohavisit A, Davies JM (2007) The gas that opens gates: calcium channel activation by ethylene. New Phytol 174:470–473

    PubMed  CAS  Google Scholar 

  • Larsen PB, Geisler MJB, Jones CA, Williams KM, Cancel JD (2005) ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J 41:353–363

    PubMed  CAS  Google Scholar 

  • Larsen PB, Cancel J, Rounds M, Ochoa V (2007) Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. Planta 225:1447–1458

    PubMed  CAS  Google Scholar 

  • Lazof DB, Goldsmith JG, Rufty TW, Linton RW (1996) The early entry of Al into root cells of intact soybean roots. A comparison of three developmental root regions using secondary ion mass spectrometry imaging. Plant Physiol 108:152–160

    Google Scholar 

  • Levesque L, Mizzen C, McLachlan DR, Fraser PE (2000) Ligand specific effects on aluminum incorporation and toxicity in neurons and astrocytes. Brain Res 877:191–202

    PubMed  CAS  Google Scholar 

  • Llugany M, Gunsé B, Poschenrieder C, Barceló J (1992) Total, plastic and elastic extensibility of Zea mays coleoptiles exposed to aluminum in vitro. Physiol Plant 85(part II):A76

    Google Scholar 

  • Llugany M, Massot N, Wissemeier H, Poschenrieder C, Horst WJ, Barceló J (1994) Aluminium tolerance of maize cultivars as assessed by callose production and root elongation. Z Pflanzenernähr Bodenk 157:447–451

    CAS  Google Scholar 

  • Llugany M, Poschenrieder C, Barceló J (1995) Monitoring of aluminium-induced inhibition of root elongation in four maize cultivars differing in tolerance to aluminium and proton toxicity. Physiol Plant 93:265–271

    CAS  Google Scholar 

  • Llugany M, Lombini A, Poschenrieder C, Dinelli E, Barceló J (2003) Different mechanisms account for enhanced copper resistance in Silene armeria ecotypes from mine spoil and serpentine sites. Plant Soil 251:55–63

    CAS  Google Scholar 

  • Ma JF (2000) The role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol 41:383–390

    PubMed  CAS  Google Scholar 

  • Ma JF (2007) Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. Int Rev Cytol 264:225–252

    PubMed  CAS  Google Scholar 

  • Ma JF, Hiradate S (2000) Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta 211:355–360

    PubMed  CAS  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    PubMed  CAS  Google Scholar 

  • Ma JF, Shen RF, Nagao S, Tanimoto E (2004)Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots. Plant Cell Physiol 45:583–589

    PubMed  CAS  Google Scholar 

  • Ma JF, Nagao S, Huang CF, Nishimura M (2005) Isolation and characterization of a rice mutant hypersensitive to Al. Plant Cell Physiol 46:1054–1061

    PubMed  CAS  Google Scholar 

  • Magalhaes JV, Liu J, Guimaraes CT, Lana UGP, Alves VMC, Wang YH, Schaffert RE, Hoekenga OA, Piñeros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161

    PubMed  CAS  Google Scholar 

  • Manciulea A, Ramsey MH (2006) Effect of scale of Cd heterogeneity and timing of exposure on the Cd uptake and shoot biomass, of plants with a contrasting root morphology. Sci Total Environ 367:958–967

    PubMed  CAS  Google Scholar 

  • Massot N, Nicander B, Barceló J, Poschenrieder C, Tillberg E (2002) A rapid increase in cytokinin levels and enhanced ethylene evolution precede Al3+ -induced inhibition of root growth in bean seedlings (Phaseolus vulgaris L.). Plant Growth Regul 37:105–112

    CAS  Google Scholar 

  • Mathieu S, Millen N, Contini MD, Gonzalez M, Molinas SM, Elias NM (2006) Urinary concentrating mechanism and Aquaporin-2 abundance in rats chronically treated with aluminum lactate. Toxicology 223:209–218

    Google Scholar 

  • Matsumoto H, Hirasawa E, Morimura S, Takahashi E (1976) Localization of absorbed aluminium in pea root and its binding to nucleic acid. Plant Cell Physiol 17:627–631

    CAS  Google Scholar 

  • Milla MAR, Butler E, Huete AR, Wilson CF, Anderson O, Gustafson JP (2002) Expressed sequence tag-based gene expression analysis under aluminum stress in rye. Plant Physiol 130:1706–1716

    PubMed  CAS  Google Scholar 

  • Molendijk AJ, Ruperti B, Palme K (2004) Small GTPases in vesicle trafficking. Curr Opin Plant Biol 7:694–700

    PubMed  CAS  Google Scholar 

  • Mori IC, Schroeder JI (2004) Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol 135:702–708

    PubMed  CAS  Google Scholar 

  • Morimura S, Takahashi E, Matsumoto H (1978) Association of aluminium with nuclei and inhibition of cell division in onion (Allium cepa) roots. J Plant Physiol 88:395–401

    CAS  Google Scholar 

  • Nakagawa Y, Katagiri T, Shinozaki K, Qui Z, Tatsumi H, Furuichi T, Kishigami A, Sokabe M, Kojima I, Sato S, Kato T, Tabata S, Iida K, Terashima A, Nakano M, Ikeda M, Yamanaka T, Iida H (2007) Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci USA 104:3639–3644

    PubMed  CAS  Google Scholar 

  • Narasimhamoorthy B, Blancaflor EB, Bouton JH, Payton ME, Sledge MK (2007) A comparison of hydroponics, soil, and root staining methods for evaluation of aluminum tolerance in Medicago trunculata (barrel medic) germplasm. Crop Sci 47:321–328

    CAS  Google Scholar 

  • Osmont KS, Sibout R, Hardtke S (2007) Hidden breanches: developments in root system architecture. Annu Rev Plant Biol 58:93–113

    PubMed  CAS  Google Scholar 

  • Pan JW, Zhu MY, Chen H (2001) Aluminum-induced cell death in root-tip cells of barley. Environ Exp Bot 46:71–79

    PubMed  CAS  Google Scholar 

  • Peremyslov VV, Proknevsky Ai, Avisar D, Dolja VV (2008) Two class XI myosins function in organelle trafficking and root hair development in Arabidopsis. Plant Physiol 146:1109–1116

    PubMed  CAS  Google Scholar 

  • Pi M, Faber P, Ekema G, Jackson PD, Ting A, Wang N, Fontilla-Poole M, Mays RW, Brunden KR, Harrington JJ, Quarles LD (2005) Identification of a novel extracellular cation-sensing G-protein-coupled receptor. J Biol Chem 280:40201–40209

    PubMed  CAS  Google Scholar 

  • Piñeros MA, Cancado GMA, Maron LG, Lyi SM, Sangborn M, Menossi M, Kochian LV (2008) Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: the case of ZmALMT1—an anion-selctive transporter. Plant J 53:352–367

    PubMed  Google Scholar 

  • Ponce G, Rasgado FA, Cassab GI (2008) Roles of amyloplasts and water deficit in root tropisms. Plant Cell Environ 31:205–217

    PubMed  CAS  Google Scholar 

  • Poschenrieder C, Gunsé B, Corrales I, Barceló J (2008) A glance into aluminium toxicity and resistance in plants. Sci Total Environ 400(1–3):356–268

    PubMed  CAS  Google Scholar 

  • Potokar M, Kreft M, Li L, Andersson JD, Pangršic, Chowdhury HH, Pekny M, Zorec R (2007) Cytoskeleton and vesicle mobility in astrocytes. Traffic 8:12–20

    PubMed  CAS  Google Scholar 

  • Pritchard J (1994) The control of cell expansion in roots. New Phytol 127:2–26

    Google Scholar 

  • Quarles LD, Wenstrup RJ, Castillo SA, Drezner MK (1991) Aluminum-induced mitogenesis in MC373-E1 osteoblasts: potential mechanism underlying neoosteogenesis. Endocrinology 128:3144–3151

    PubMed  CAS  Google Scholar 

  • Qui Z, Stephens NR, Spalding EP (2006) Calcium entry mediated by GLR3.3, and Arabidopsis glutamate receptor with broad agonist profile. Plant Physiol 142:963–971

    Google Scholar 

  • Ramos-Díaz A, Brito L, Munnik T, Hernandez-Sotomayor SMT (2007) Aluminum inhibits phosphatidic acid formation by locking the phospholipase C pathway. Planta 225:393–401

    PubMed  Google Scholar 

  • Rangel AF, Rao I, Horst WJ (2007) Spatial aluminium sensitivity of root apices of two common bean (Phaseolus vulgaris L.) genotypes with contrasting aluminium tolerance. J Exp Bot 58:3859–3904

    Google Scholar 

  • Reid RJ, Rengel Z, Smith FA (1996) Membrane fluxes and comparative toxicities of aluminium, scandium and gallium. J Exp Bot 47:1881–1888

    CAS  Google Scholar 

  • Rengel Z, Zhang WH (2003) Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. New Phytol 159:295–314

    CAS  Google Scholar 

  • Ritchie RJ, Raghupathi SS (2008) Al-toxicity studies in yeast using gallium as an aluminum analogue. Biometals 21:379–393

    PubMed  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Mol Biol 52:527–560

    CAS  Google Scholar 

  • Šamaj J, Baluška F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004) Endocytosis, actin cytoskeleton and signaling. Plant Physiol 135:1150–1161

    PubMed  Google Scholar 

  • Šamaj J, Read ND, Volkmann D, Menzel D, Baluška F (2005) The endocytic network in plants. Trends Cell Biol 15:425–433

    PubMed  Google Scholar 

  • Sánchez-Calderón L, López-Bucio J, Chacón-López A, Cruz-Ramírez A, Nieto Jacobo F, Dubrovsky JG, Herrera-Estrella L (2005) Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol 46:174–184

    PubMed  Google Scholar 

  • Saski T, Ryan PR, Delhaize E, Hebb DM, Ogihara Y, Kawaura K, Noda K, Kojima T, Toyoda A, Matsumoto H, Yamamoto Y (2006) Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant Cell Physiol 47:1343–1354

    Google Scholar 

  • Shishikova S, Rost TL, Dubrovsky (2008) Determinate root growth and meristem maintenance in angiosperms. Ann Bot 101:319–340

    Google Scholar 

  • Silva IR, Smyth TJ, Moxley DF, Carter TE, Allen NS, Rufty TW (2000) Aluminium accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy. Plant Physiol 123:543–552

    PubMed  CAS  Google Scholar 

  • Šimonovičová M, Huttová J, Mistrík I, Široká B, Tamás L (2004) Root inhibition by aluminum is probably caused by cell death due to peroxidase-mediated hydrogen peroxide production. Protoplasma 224:91–98

    PubMed  Google Scholar 

  • Sivaguru M, Horst WJ (1998) The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize. Plant Physiol 116:155–163

    CAS  Google Scholar 

  • Sivaguru M, Baluška F, Volkmann D, Felle HH, Horst WJ (1999) Impacts of aluminum on the cytoskeleton of the maize root apex. Short-term effects on the distal part of the transition zone. Plant Physiol 119:1073–1082

    PubMed  CAS  Google Scholar 

  • Sivaguru M, Fujiwara T, Samaj J, Baluška F, Yang ZM, Osawa H, MAeda T, Mori T, Volkmann D, Matsumoto H (2000) Aluminum-induced 1-3-beta-D-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants. Plant Physiol 124:991–1005

    PubMed  CAS  Google Scholar 

  • Sivaguru M, Pike S, Gassmann W, Baskin TI (2003) Aluminum rapidly depolymerizes cortical microtubules and depolarizes tha plasma membrane: evidence that these responses are mediated by a glutamate receptor. Plant Cell Physiol 44:667–675

    PubMed  CAS  Google Scholar 

  • Suarez-Fernandez MB, Soldado AB, Sainz-Medel A, Vega JA, Novelli A, Fernandez-Sánchez MT (1999) Aluminum-induced degeneration of astrocytes occurs via apoptosis and results in neuronal death. Brain Res 835:125–136

    PubMed  CAS  Google Scholar 

  • Tabuchi A, Matsumoto H (2001) Changes in cell wall properties of wheat (Triticum aestivum) roots during aluminum-induced growth inhibition. Physiol Plant 112:353–358

    PubMed  CAS  Google Scholar 

  • Taylor GJ, Stephens JL, Hunte DB, Bertsch PM, Elmore D, Rengel Z, Reid R (2000) Direct measurement of aluminium uptake and distribution in single cells of Chara corallina. Plant Physiol 123:987–996

    PubMed  CAS  Google Scholar 

  • Theiss C, Meller K (2002) Aluminum impairs gap junctional intercellular communications between astroglial cells in vitro. Cell Tissue Res 310:143–154

    PubMed  CAS  Google Scholar 

  • Tolrà R, Poschenrieder C, Barceló J (1996) Zinc hyperaccumulation in Thlaspi caerulescens. I. Influence on growth and mineral nutrition. J Plant Nutr 19:1531–1540

    Google Scholar 

  • Valadez-Gonzalez N, Colli-Mull JG, Brito-Argaez L, Muñoz-Sanchez JA, Aguilar JJZ, Castano E, Hernandez-Sotomayor SMT (2007) Differential effect of aluminum on DNA synthesis and CDKA activity in two Coffea arabica cell lines. J Plant Growth Regul 26:69–77

    CAS  Google Scholar 

  • Vanneste S, Inzé D, Beeckman T (2007) Auxin fuels the cell cycle engine during lateral root initiation. In: Inzé D (ed)Cell cycle control and plant development (Annals of Plant Reviews vol 32) . Blackwell, Oxford, pp 187–202

    Google Scholar 

  • Vázquez MD, Poschenrieder C, Corrales I, Barceló J (1999) Change in apoplastic aluminium during the initial growth response to aluminium by roots of a tolerant maize variety. Plant Physiol 119:435–444

    PubMed  Google Scholar 

  • Walch-Liu P, Liu LH, Remans T, Tester M, Forde BG (2006) Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant Cell Physiol 47:1045–1057

    PubMed  Google Scholar 

  • Wang JP, Raman H, Zhou MX, Ryan PR, Delhaize E, Hebb DM, Coombes N Mendham N (2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theor Appl Gen 115:265–276

    CAS  Google Scholar 

  • Watanabe T, Osaki M, Tadano T (2001) Al uptake kinetics in roots of Melastoma malabathricum L.—an Al accumulator plant. Plant Soil 231:283–291

    CAS  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    PubMed  CAS  Google Scholar 

  • Wijesinghe DK, John EA, Beurskens S, Hutchings MJ (2001) Root system size and precision in nutrient foraging: responses to spatial pattern of nutrient supply in six herbaceous species. J Ecol 89:972–983

    Google Scholar 

  • Wisniewska J, Xu J, Seifertová D, Brewer PB, Ruzicka K, Blilou I, Rouquié D, Benková E, Scheres B, Friml J (2006) Polar PIN localization directs auxin flow in plants. Science 312:883

    PubMed  CAS  Google Scholar 

  • Yao XL, Jenkins EC, Wisniewski HM (1994) Effect of aluminum-chloride on mitogenesis, mitosis, and cell-cycle in human short-term whole blood cultures: lower concentrations enhance mitosis. J Cell Biochem 54:473–477

    PubMed  CAS  Google Scholar 

  • Zhang WH, Rengel Z, Yan G 1999 Aluminium effects on pollen germination and tube growth of Chamelaucium uncinatum. A comparison with other Ca2+ antagonists. Ann Bot 84:559–564

    CAS  Google Scholar 

  • Zheng K, Pan JW, Ye L, Fu Y, Peng HZ, Wan BY, Gu Q, Bian HW, Han N, Wang JH, Kang B, Pan JH, Shao HH, Wang WZ, Zhu MY (2007) Programmed cell death-involved aluminum toxicity in yeast alleviated by antiapoptotic members with decreased calcium signals. Plant Physiol 143:38–49

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the Spanish and the Catalonian Governments (BFU2007-60332/BFI and Grup de Recerca, expedient 2005R 00785).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Poschenrieder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Poschenrieder, C., Amenós, M., Corrales, I., Doncheva, S., Barceló, J. (2009). Root Behavior in Response to Aluminum Toxicity. In: Balu¿ka, F. (eds) Plant-Environment Interactions. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89230-4_2

Download citation

Publish with us

Policies and ethics