Skip to main content

Plants and Animals: Convergent Evolution in Action?

  • Chapter
  • First Online:
Plant-Environment Interactions

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

It is hardly an exaggeration to say that the tip of the radicle thus endowed [with sensitivity] and having the power of directing the movements of the adjoining parts, acts like the brain of one of the lower animals; the brain being seated within the anterior end of the body, receiving impressions from the sense-organs, and directing the several movements.

—Charles Darwin in The Power of Movement in Plants (1880; John Murray, London, p 573)

The Aristotelian–Linnean heritage of our current sciences is tightly associated with a view of automata-like passive plants lacking active sensory-driven lifestyles. Charles Darwin made the first attempt to escape from this "Aristotelian trap." Although his work on plants stimulated lively research into plant tropisms and hormones, his unconventional view of plants was largely ignored by the mainstream of plant sciences until recently. Darwin witnessed early studies on electrical signaling in plants, including plant action potentials. Nevertheless, this important and well-developed field of plant sciences was almost wiped out following the publication of the controversial book The Secret Life of Plants in the 1970s. The resulting "esoteric stigma" hindered the further development of this branch of plant sciences. Recently, advances in cell and molecular biology as well as in ecology led to the birth of plant neurobiology, which aims to study plants in their full sensory and communicative complexity. New concepts are needed and new questions must be asked in order to advance our still rudimentary understanding of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad M, Galland P, Ritz T, Wiltschko R, Wiltschko W (2007) Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta 225:615–624

    Article  PubMed  CAS  Google Scholar 

  • Alpi A, Amrhein N, Bertl A, et al. (2007) Plant neurobiology: no brain, no gain? Trends Plant Sci 12:135–136

    Article  PubMed  CAS  Google Scholar 

  • Anjard C, Loomis WF (2008) Cytokinins induce sporulation in Dictyostelium. Development 135:819–837

    Article  PubMed  CAS  Google Scholar 

  • Backster C (1968) Evidence of a primary perception in plant life. Int J Parapsychol 10:329–348

    Google Scholar 

  • Bais HP, Park S-W, Weir TL, Callaway RM, Vivanco J (2003) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  Google Scholar 

  • Baker MD, Stock JB (2007) Signal transduction: networks and integrated circuits in bacterial cognition. Curr Biol 17:R1021–R1024

    Article  PubMed  CAS  Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant–plant interactions: "talking trees" in the genomics era. Science 311:812–815

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Mancuso S (2006) Plant neurobiology as a paradigm shift not only in the plant sciences. Plant Signal Behav 2:205–207

    Article  Google Scholar 

  • Baluška F, Vitha S, Barlow PW, Volkmann D (1997) Rearrangements of F-actin arrays in growing cells of intact maize root apex tissues: a major developmental switch occurs in the postmitotic transition region. Eur J Cell Biol 72:113–121

    PubMed  Google Scholar 

  • Baluška F, Hlavacka A, Šamaj J, Palme K, Robinson DG, Matoh T, McCurdy DW, Menzel D, Volkmann D (2002) F-actin-dependent endocytosis of cell wall pectins in meristematic root cells: insights from brefeldin A-induced compartments. Plant Physiol 130:422–431

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Šamaj J, Menzel D (2003) Polar transport of auxin: carrier-mediated flux across the plasma membrane or neurotransmitter-like secretion? Trends Cell Biol 13:282–285

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Volkmann D, Menzel D (2005a) Plant synapses: actin-based domains for cell-cell communication. Trends Plant Sci 10:106–111

    Article  CAS  Google Scholar 

  • Baluška F, Barlow PW, Baskin TI, Chen R, Feldman L, Forde BG, Geisler M, Jernstedt J, Menzel D, Muday GK, Murphy A, Samaj J, Volkmann D (2005b) What is apical and what is basal in plant root development? Trends Plant Sci 10:409–411

    Article  CAS  Google Scholar 

  • Baluška F, Mancuso S, Volkmann D (2006a) Communication in plants: neuronal aspects of plant life. Springer, Berlin

    Google Scholar 

  • Baluška F, Hlavacka A, Mancuso S, Barlow PW (2006b) Neurobiological view of plants and their body plan. In: Baluška F, Mancuso S, Volkmann D (eds) Communication in plants: neuronal aspects of plant life. Springer, Berlin, pp 19–35

    Google Scholar 

  • Baluška F, Barlow PW, Volkmann D, Mancuso S (2007) Gravity related paradoxes in plants: plant neurobiology provides the means for their resolution. In: Witzany G (ed) Biosemiotics in transdisciplinary context. Umweb, Helsinky, pp 9–35

    Google Scholar 

  • Baluška F, Schlicht M, Wan Y-L, Burbach C, Volkmann D (2009) Intracellular domains and polarity in root apices: from synaptic domains to plant neurobiology. Nova Acta Leopold (in press)

    Google Scholar 

  • Baluška F, Schlicht M, Volkmann D, Mancuso S (2008) Vesicular secretion of auxin: evidences and implications. Plant Signal Behav 3:254–256

    Article  PubMed  Google Scholar 

  • Barbier-Brygoo H, Ephritikhine G, Klämbt D, Maurel C, Palme K, Schell J, Guern J (1991) Perception of the auxin signal at the plasma membrane of tobacco mesophyll protoplasts. Plant J 1:83–93

    Article  CAS  Google Scholar 

  • Barlow PW (1993) The root cap: cell dynamics, cell differentiation and cap function. J Plant Growth Regul 21:261–286

    Article  CAS  Google Scholar 

  • Barlow PW (2006) Charles Darwin and the plant root apex: closing the gap in living systems theory as applied to plants. In: Baluška F, Mancuso S, Volkmann D (eds) Communication in plants: neuronal aspects of plant life. Springer, Berlin, pp 37–51

    Google Scholar 

  • Barlow PW (2008) Reflections on plant neurobiology. Biosystems 92:132–147

    Article  PubMed  Google Scholar 

  • Benda J, Gollisch T, Machens CK, Herz AVM (2007) From response to stimulus: adaptive sampling in sensory physiology. Curr Opin Neurobiol 17:430–436

    Article  PubMed  CAS  Google Scholar 

  • Beaubois E, Girard S, Lallechere S, Davies E, Paladian F, Bonnet P, Ledoigt G, Vian A (2007) Intercellular communication in plants: evidence for two rapidly transmitted systemic signals generated in response to electromagnetic field stimulation in tomato. Plant Cell Environ 30:733–744

    Article  CAS  Google Scholar 

  • Bhalerao RP, Bennett MJ (2003) The case for morphogens in plants. Nat Cell Biol 5:939–941

    Article  PubMed  CAS  Google Scholar 

  • Braam J (2005) In touch: plant responses to mechanical stimuli. New Phytol 165:373–389

    Article  PubMed  Google Scholar 

  • Brenner ED, Stahlberg R, Mancuso S, Vivanco J, Baluska F, Van Volkenburgh E (2006) Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci 11:413–419

    Article  PubMed  CAS  Google Scholar 

  • Brenner ED, Stahlberg R, Mancuso S, Vivanco J, Baluška F, Van Volkenburgh E (2007) Response to Alpi et al.: plant neurobiology—the gain is more than the name. Trends Plant Sci 12:285–286

    Article  PubMed  CAS  Google Scholar 

  • Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007) Stressful "memories" of plants: evidence and possible mechanisms. Plant Sci 173:604–608

    Article  CAS  Google Scholar 

  • Bruzzone S, Moreschi I, Usai C, Guida L, Damonte G, Salis A, Scarfi S, Millo E, De Flora A, Zocchi E (2007) Abscisic acid is an endogenous cytokine in human granulocytes with cyclic ADP-ribose as second messenger. Proc Natl Acad Sci USA 104:5759–5764

    Article  PubMed  CAS  Google Scholar 

  • Calvo Garzon F (2007) The quest for cognition in plant neurobiology. Plant Signal Behav 2:208–211

    Article  Google Scholar 

  • Campagna JA, Miller KW, Forman SA (2003) Mechanisms of actions of inhaled anesthetics. N Engl J Med 348:2110–2124

    Article  PubMed  CAS  Google Scholar 

  • Collings DA, White RG, Overall RL (1992) Ionic current changes associated with the gravity-induced bending response in roots of Zea mays L. Plant Physiol 100:1417–1426

    Article  PubMed  CAS  Google Scholar 

  • Conway Morris S (2003) Life’s solution. Inevitable humans in a lonely universe. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Conway Morris S (2006) Evolutionary convergence. 16:R826–R827

    Google Scholar 

  • Crick FHC (1988) What mad pursuit: a personal view of scientific discovery. Basic, New York

    Google Scholar 

  • Crotty P, Sangrey T, Levy WB (2006) Metabolic energy cost of action potential velocity. J Neurophysiol 96:1237–1246

    Article  PubMed  CAS  Google Scholar 

  • Darwin CR (assisted by Darwin F) (1880) The power of movement in plants. John Murray, London

    Google Scholar 

  • Darwin CR (1875a) Insectivorous plants. John Murray, London

    Google Scholar 

  • Darwin CR (1875b) The movements and habits of climbing plants. John Murray, London

    Google Scholar 

  • Darwin F (1899) The botanical work of Darwin. Ann Bot 13:626

    Google Scholar 

  • Davies E (2006) New functions for electric signals in plants. New Phytol 161:607–610

    Article  Google Scholar 

  • Dawkins R (2005) The ancestor's tale: a pilgrimage to the dawn of evolution. Mariner, New York

    Google Scholar 

  • DeWeese MR, Zador A (2006) Efficiency mesures. Nature 439:920–921

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe P, Baluška F, Schlicht M, Hlavacka A, Šamaj J, Friml J, Gadella TWJ Jrp (2006) Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev Cell 10:137–150

    Article  PubMed  CAS  Google Scholar 

  • Dicke M, Agrawal AA, Bruin J (2003) Plants talk, but are they deaf? Trends Plant Sci 8:403–405

    Article  PubMed  CAS  Google Scholar 

  • Esmon CA, Pedmale UV, Liscum E (2005) Plant tropisms: providing the power of movement to a sessile organism. Int J Dev Biol 49:665–674

    Article  PubMed  CAS  Google Scholar 

  • Felle HH, Zimmermann MR (2007) Systemic signalling in barley through action potentials. Planta 226:203–214

    Article  PubMed  CAS  Google Scholar 

  • Felle H, Peters W, Palme K (1991) The electrical response of maize to auxins. Biochim Biophys Acta 1064:199–204

    Article  PubMed  CAS  Google Scholar 

  • Flanary BE, Kletetschka G (2005) Analysis of telomere length and telomerase activity in tree species of various life-spans, and with age in the bristelcone pine Pinus longaeva. Biogerontology 6:101–111

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Benfey P, Benková E, Bennett M, Berleth T, Geldner N, Grebe M, Heisler M, Hejátko J, Jürgens G, Laux T, Lindsey K, Lukowitz W, Luschnig C, Offringa R, Scheres B, Swarup R, Torres-Ruiz R, Weijers D, Zazímalová E (2006). Apical–basal polarity: why plant cells don't stand on their heads. Trends Plant Sci 11:12–14

    Google Scholar 

  • Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257

    Article  PubMed  CAS  Google Scholar 

  • Galland P, Pazur A (2005) Magnetoreception in plants. J Plant Res 118:371–389

    Article  Google Scholar 

  • Grant CJ, Powell JN, Radford SG (1974) Effects of halothane on DNA synthesis and mitosis in root tip meristems of Vicia faba. Br J Anaesth 46:653–657

    Article  PubMed  CAS  Google Scholar 

  • Greenspan RJ (2007) An introduction to nervous systems. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Gruntman M, Novoplansky A (2004) Physiologically mediated self/non-self discrimination in roots. Proc Natl Acad Sci USA 10:3863–3867

    Article  CAS  Google Scholar 

  • Guillery RW (2005) Observations of synaptic structures: origins of the neuron doctrine and its current status. Phil Trans R Soc B 360:1281–1307

    Article  PubMed  CAS  Google Scholar 

  • Hawes MC, Gunawardena U, Miyasaka S, Zhao X (2000) The role of root border cells in plant defense. Trends Plant Sci 5:128–133

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison J (1980) Darwin and the movement of plants: a retrospect. In: Skoog F (ed) Plant growth substances 1979. Springer, Berlin, pp 3–14

    Google Scholar 

  • Holland ND (2003) Early central nervous system evolution: an era of skin brains? Nat Rev Neurosci 4:617–627

    Article  CAS  Google Scholar 

  • Ingensiep HW (2001) Geschichte der Pflanzenseele: Philosophische und biologische Entwürfe von der Antike bis zur Gegenwart. Kröner, Stuttgart

    Google Scholar 

  • Jenal U, Silversmith RE, Sogaard-Andersen L, Sockett L (2005) Sense and sensibility in bacteria. EMBO Rep 6:615–619

    Article  PubMed  CAS  Google Scholar 

  • Jeong MJ, Shim CK, Lee JO, Kwon HB, Kim YH, Lee SK, Byun MO, Park SC (2007) Plant gene responses to frequency-specific sound signals. Mol Breed 21:217–226

    Article  CAS  Google Scholar 

  • Johnsen S, Mattern E, Ritz Th (2007) Light-dependent magnetoreception: quantum catches and opponency mechanisms of possible photosensitive molecules. J Exp Biol 210:3171–3178

    Article  PubMed  Google Scholar 

  • Kandel ER (2006) In search of memory. The emergence of new theory of mind. Norton, New York

    Google Scholar 

  • Keyes WJ, Taylor JV, Apkarian RP, Lynn DG (2001) Dancing together. Social controls in parasitic plant development. Plant Physiol 127:1508–1512

    CAS  Google Scholar 

  • Kim DS, Kim SY, Jeong YM, Jeon SE, Kim MK, Kwon SB, Na JI, Park KC (2006) Light-activated indole-3-acetic acid induces apoptosis in g361 human melanoma cells. Biol Pharm Bull 29:2404–2409

    Article  PubMed  CAS  Google Scholar 

  • King-Hele D (1974) Erasmus Darwin, master of many crafts. Nature 247:87–91

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi A, Takahashi A, Kakimoto Y, Miyazawa Y, Fujii N, Higashitani A, Takahashi H (2007) A gene essential for hydrotropism in roots. Proc Natl Acad Sci USA 104:4724–4729

    Article  PubMed  CAS  Google Scholar 

  • Kovac L (2007) Information and knowledge in biology: time for reappraisal. Plant Signal Behav 2:65–73

    Article  PubMed  Google Scholar 

  • Kwon C, Neu C, Pajonk S, Yun HS, Lipka U, Humphry M, Bau S, Straus M, Kwaaitaal M, Rampelt H, El Kasmi F, Jürgens G, Parker J, Panstruga R, Lipka V, Schulze-Lefert P (2008a) Co-option of a default secretory pathway for plant immune responses. Nature 451:835–840

    Article  CAS  Google Scholar 

  • Kwon C, Panstruga, Schulze-Lefert P (2008b) Les liaisons dangereuses: immunological synapse formation in animals and plants. Trends Immunol 29:159–166

    Article  CAS  Google Scholar 

  • Lennie P (2003) The cost of cortical computation. Curr Biol 13:493–497

    Article  PubMed  CAS  Google Scholar 

  • Li X, Zhang WS (2008) Salt-avoidance tropism in Arabidopsis thaliana. Plant Signal Behav 3:351–353

    Article  PubMed  Google Scholar 

  • Mancuso S, Marras AM, Volker M, Baluška F (2005) Non-invasive and continuous recordings of auxin fluxes in intact root apex with a carbon-nanotube-modified and self-referencing microelectrode. Anal Biochem 341:344–351

    Article  PubMed  CAS  Google Scholar 

  • Mancuso S, Marras AM, Mugnai S, Schlicht M, Zarsky V, Li G, Song L, Hue HW, Baluška F (2007) Phospholipase Dζ2 drives vesicular secretion of auxin for its polar cell-cell transport in the transition zone of the root apex. Plant Signal Behav 2:240–244

    Article  PubMed  Google Scholar 

  • Meinhardt H (2002) The radial-symmetric hydra and the evolution of the bilateral body plan: an old body became a young brain. Bioessays 24:185–191

    Article  PubMed  Google Scholar 

  • Meyerowitz EM (2000) The plant plan: multicellular life in the other Kingdom. Harvey Lect 96:51–72

    PubMed  Google Scholar 

  • Munne-Bosch S (2008) Do perennials really senesce? Trends Plant Sci 13:216–220

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H, Furuichi T, Kishigami A, Sokabe M, Kojima I, Sato S, Kato T, Tabata S, Iida K, Terashima A, Nakano M, Ikeda M, Yamanaka T, Iida H (2007) Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci USA 104:3639–3644

    Article  PubMed  CAS  Google Scholar 

  • Powell JN, Grant CJ, Robinson SM, Radford SG (1973) A comparison with halothane of the hormonal and anaesthetic properties of ethylene in plants. Br J Anaesth 45:682–690

    Article  PubMed  CAS  Google Scholar 

  • Puce S, Basile G, Bavestrello G, Bruzzone S, Cerrano C, Giovine M, Arillo A, Zocchi W (2004) Abscisic acid signaling through cyclic ADP-ribose in hydroid regeneration. J Biol Chem 17:39783–39788

    Article  CAS  Google Scholar 

  • Radl E (1909) Die Geschichte der biologischen Theorien. Wilhelm Engelmann, Leipzig

    Book  Google Scholar 

  • Ripoll C, Le Sceller L, Verdus MC, Norris V, Tafforeau M, Thellier M (2008) Memorization of abiotic stimuli in plants. A complex role for calcium. In: Baluška F (ed) Plant–environment interactions:. Springer, Berlin

    Google Scholar 

  • Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12:217–223

    Article  PubMed  CAS  Google Scholar 

  • Rotem R, Heyfets A, Fingrut O, Blickstein D, Shaklai M, Flescher E (2005) Jasmonates: novel anticancer agents acting directly and selectively on human cancer cell mitochondria. Cancer Res 65:1984–1993

    Article  PubMed  CAS  Google Scholar 

  • Roux D, Faure C, Bonnet P, Girard S, Ledoigt G, Davies E, Gendraud M, Paladian F, Vian A (2008) A possible role for extra-cellular ATP in plant responses to high frequency, low amplitude electromagnetic field. Plant Signal Behav 3:383–385

    Article  PubMed  Google Scholar 

  • Rubin LL, Staddon JM (1999) The cell biology of the blood–brain barrier. Annu Rev Neurosci 22:11–28

    Article  PubMed  CAS  Google Scholar 

  • Rudrappa T, Bais HP (2008) Genetics, novel weapons and rhizospheric microcosmal signaling in the invasion of Phragmites australis. Plant Signal Behav 3:1–5

    Article  PubMed  Google Scholar 

  • Rudrappa T, Bonsall J, Gallagar J, Seliskar DM, Bais HP (2007) Root secreted allelochemical in noxious weed Phragmites australis deploys reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity. J Chem Ecol 33:1898–1918

    Article  PubMed  CAS  Google Scholar 

  • Runyon JB, Mescher MC, De Moraes CM (2006) Volatile chemical cues guide host location and host selection by parasitic plants. Science 313:1964–1967

    Article  PubMed  CAS  Google Scholar 

  • Ruuhola T, Salminen JP, Haviola S, Yang S, Rantala MJ (2007) Immunological memory of mountain birches: effects of phenolics on performance of the autumnal moth depend on herbivory history of trees. J Chem Ecol 33:1160–1176

    Article  PubMed  CAS  Google Scholar 

  • Sagane Y, Nakagawa T, Yamamoto K, Michikawa S, Oguri S, Momonoki YS (2005) Molecular characterization of maize acetylcholinesterase. A novel enzyme family in the plant kingdom. Plant Physiol 138:1359–1371

    CAS  Google Scholar 

  • Šamaj J, Read ND, Volkmann D, Menzel D, Baluška F (2005) Endocytic network in plants. Trends Cell Biol 15:425–433

    Article  PubMed  CAS  Google Scholar 

  • Šamaj J, Baluška F, Menzel D (2006) Plant endocytosis. Springer, Berlin

    Google Scholar 

  • Schlicht M, Strnad M, Scanlon MJ, Mancuso S, Hochholdinger F, Palme K, Volkmann D, Menzel D, Baluška F (2006) Auxin immunolocalization implicates vesicular neurotransmitter-like mode of polar auxin transport in root apices. Plant Signal Behav 1:122–133

    Article  PubMed  Google Scholar 

  • Shelp BJ, Bown AW, Faure D (2006) Extracellular γ-aminobutyrate mediates communication between plants and other organisms. Plant Physiol 142:1350–1352

    Article  PubMed  CAS  Google Scholar 

  • Shelp BJ, Allan WL, Faure D (2008) Role of γ-aminobutyrate and γ-hydroxybutyrate in plant communication. In: Baluška F (ed) Plant–environment interactions: behavioral perspective. Springer, Berlin

    Google Scholar 

  • Shepherd VA (2005) From semi-conductors to the rhythms of sensitive plants: the research of J.C. Bose. Cell Mol Biol 51:607–619

    CAS  Google Scholar 

  • Shoji M, Kato E, Nakamura Y, Fujii T, Manabe Y, Ueda M (2006) Bioorganic studies on plant movement, from natural products to its receptor. Chem Rec 6:344–355

    Article  PubMed  CAS  Google Scholar 

  • Smith AB (2008) Deuterostomes in a twist: the origins of a radical new body plan. Evol Dev 10:493–503

    Article  PubMed  Google Scholar 

  • Solov'yov IA, Chandler DE, Schulten K (2007) Magnetic field effects in Arabidopsis thaliana cryptochrome-1. Biophys J 92:2711–2726

    Article  PubMed  CAS  Google Scholar 

  • Stahlberg R (2006) Historical overview on plant neurobiology. Plant Signal Behav 1:6–8

    Article  PubMed  Google Scholar 

  • Steffens B, Feckler C, Palme K, Christian M, Böttger M, Lüthen H (2001) The auxin signal for protoplast swelling is perceived by extracellular ABP1. Plant J 27:591–599

    Article  PubMed  CAS  Google Scholar 

  • Stein BE (1998) Neural mechanisms for synthesizing sensory information and producing adaptive behaviors. Exp Brain Res 123:124–135

    Article  PubMed  CAS  Google Scholar 

  • Stephens NR, Qi Z, Spalding EP (2008) Glutamate receptor subtypes evidenced by differences in desensitization and dependence on the GLR3.3 and GLR3.4 genes. Plant Physiol 146:529–538

    Article  PubMed  CAS  Google Scholar 

  • Stock J, Levit M (2000) Signal transduction: hair brains in bacterial chemotaxis. Curr Biol 10:R11–R14

    Article  PubMed  CAS  Google Scholar 

  • Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T (2007) Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet 39:792–793

    Article  PubMed  CAS  Google Scholar 

  • Struik PC, Yin X, Meinke H (2008) Plant neurobiology and green plant intelligence: science, metaphors and nonsense. J Sci Food Agric 88:363–370

    Article  CAS  Google Scholar 

  • Sun F, Zhang W, Hu H, Li B, Wang Y, Zhao Y, Li K, Liu M, Li X (2007) Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis thaliana. Plant Physiol 146:178–188

    Article  PubMed  CAS  Google Scholar 

  • Tafforeau M, Verdus MC, Norris V, Ripoll C, Thellier M (2006) Memory processes in the response of plants to environmental signals. Plant Signal Behav 1:9–14

    Article  PubMed  CAS  Google Scholar 

  • Tompkins P, Bird CO (1973) The secret life of plants. Avon, New York

    Google Scholar 

  • Trewavas A (2002) Mindless mastery. Nature 415:841

    Article  PubMed  CAS  Google Scholar 

  • Trewavas A (2003) Aspects of plant intelligence. Ann Bot 92:1–20

    Article  PubMed  CAS  Google Scholar 

  • Trewavas A (2005a) Plant intelligence. Naturwissenschaften 92:401–413

    Article  CAS  Google Scholar 

  • Trewavas A (2005b) Green plants as intelligent organisms. Trends Plant Sci 10:413–419

    Article  CAS  Google Scholar 

  • Trewavas A (2007) Response to Alpi et al.: plant neurobiology—all metaphors have value. Trends Plant Sci 12:231–233

    Article  PubMed  CAS  Google Scholar 

  • Trewavas A, Knight M (1997) Mechanical signalling, calcium and plant form. Plant Mol Biol 26:1329–1341

    Article  Google Scholar 

  • Ueda M, Nakamura Y (2007) Chemical basis of plant leaf movement. Plant Cell Physiol 48:900–907

    Article  PubMed  CAS  Google Scholar 

  • Verdus MC, Sceller LL, Norris V, Thellier M, Ripoll C (2007) Pharmacological evidence for calcium involvement in the long-term processing of abiotic stimuli in plants. Plant Signal Behav 2:212–220

    Article  PubMed  Google Scholar 

  • Vermeij GJ (2006) Historical contigency and the purported uniqueness of evolutionary innovations. Proc Natl Acad Sci USA 103:1804–1809

    Article  PubMed  CAS  Google Scholar 

  • Vian A, Faure C, Girard S, Davies E, Hallé F, Bonnet P, Ledoigt G, Paladian F (2007) Plants do respond to GSM-like radiations. Plant Signal Behav 2:522–524

    Article  PubMed  Google Scholar 

  • Volkov AG (2006) Plant electrophysiology. Springer, Berlin

    Book  Google Scholar 

  • Volkov AG, Adesina T, Jovanov E (2007a) Closing of Venus flytrap by electrical stimulation of motor cells. Plant Signal Behav 2:139–145

    Article  Google Scholar 

  • Volkov AG, Adesina T, Markin VS, Jovanov E (2007b) Kinetics and mechanism of Dionaea muscipula trap closing. Plant Physiol 146:694–702

    Article  CAS  Google Scholar 

  • Volkov AG, Carrell H, Adesina T, Markin VS, Jovanov E (2008) Plant electrical memory. Plant Signal Behav 3:490–492

    Article  PubMed  Google Scholar 

  • Wayne R (1994) The excitability of plant cells: with emphasis on characean internodal cells. Bot Rev 60:265–335

    Article  PubMed  CAS  Google Scholar 

  • Webster C (1966) The recognition of plant sensitivity by English botanists in the seventeenth century. Isis 57:5–23

    Article  Google Scholar 

  • Whippo CW, Hangarter RP (2006) Phototropism: bending towards enlightenment. Plant Cell 18:1110–1119

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Mancuso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baluska, F., Mancuso, S. (2009). Plants and Animals: Convergent Evolution in Action?. In: Balu¿ka, F. (eds) Plant-Environment Interactions. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89230-4_15

Download citation

Publish with us

Policies and ethics