Skip to main content

Cognition in Plants

  • Chapter
  • First Online:
Plant-Environment Interactions

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

We discuss the possibility and the meaning of the claim that plants are cognitive from the perspective of embodied cognition. In embodied cognition, the notion of cognition can be interpreted in a very broad way and applied to many free-moving creatures. In this chapter, we discuss whether and (if so) how this approach applies to intelligence in plants. Building on work from “plant neurobiology,” we discuss the differences in speed between plants and animals, similarities between sensory-driven plant growth and animal memory, and the presence of offline behavior in plants. In our view, these examples show that under a wide, embodied interpretation of cognition, plants may well qualify as being cognitive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is thus important to differentiate here between this wide interpretation of cognition, which may apply in a meaningful way far beyond the human case, and the notion of mind, which may well remain highly restrictive and possibly limited to human beings.

  2. 2.

    This story is actually a mere anecdote, and not systematically corroborated by evidence (Keijzer 2001).

  3. 3.

    For introductions and overviews of embodied cognition, see, e.g., Calvo and Gomila (2008), Clark (1997), Pfeifer and Scheier (19991991), or Varela et al. ().

  4. 4.

    For Jonas (1966), motility and perception are also intrinsically linked to emotion and the presence of an inner, phenomenal dimension. We will not discuss these further complexities here.

  5. 5.

    For more sophisticated plant competencies, see Trewavas (2005).

References

  • Adams F, Aizawa K (2001) The bounds of cognition. Philos Psychol 14:43–64

    Article  Google Scholar 

  • Allen PH (1977) The rain forests of Golfo Dulce. Stanford University Press, Stanford

    Google Scholar 

  • Alpi A, Amrhein N, Bertl A, et al. (2007) Plant neurobiology: no brain, no gain? Trends Plant Sci 12:135–136

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Mancuso S, Volkmann D, Barlow P (2004) Root apices as plant command centres: the unique 'brain-like' status of the root apex transition zone. Biologia 59:9–17

    Google Scholar 

  • Baluška F, Mancuso S, Volkmann D (eds) (2006) Communication in plants: neuronal aspects of plant life. Springer, Berlin

    Google Scholar 

  • Barandiaran X (2008) Mental life: a naturalized approach to the autonomy of cognitive agents. Dissertation, University of the Basque Country, San Sebastian

    Google Scholar 

  • Barlow PW (2008) Reflections on 'plant neurobiology.' BioSystems 99:132–147

    Article  Google Scholar 

  • Beer R (1995) A dynamical systems perspective on agent–environment interaction. Artific Int 72:173–215

    Article  Google Scholar 

  • Beer RD (2000) Dynamical approaches to cognitive science. Trends Cogn Sci 4:91–99

    Article  PubMed  Google Scholar 

  • Beer RD (2003) The dynamics of active categorical perception in an evolved model agent. Adapt Behav 11:209–243

    Article  Google Scholar 

  • Bekoff M, Allen C, Burghardt GM (eds) (2002) The cognitive animal: empirical and theoretical perspectives on animal cognition. MIT, Cambridge, MA

    Google Scholar 

  • Berg HC (2000) Motile behavior of bacteria. Phys Today 53:24

    Article  CAS  Google Scholar 

  • Bickhard M (2008) Is embodiment necessary? In: Calvo P, Gomila T (eds) Handbook of cognitive science: an embodied approach. Elsevier, Amsterdam, pp 29–40

    Google Scholar 

  • Bose I, Karmakar R (2003) Simple models of plant learning and memory. Physica Scripta T106:9–12

    Article  CAS  Google Scholar 

  • Brenner ED, Stahlberg R, Mancuso S, Vivanco J, Baluška F, Van Volkenburgh E (2006) Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci 11:413–419

    Article  PubMed  CAS  Google Scholar 

  • Brenner ED, Stahlberg R, Mancuso S, Baluška F, Van Volkenburgh E (2007) Plant neurobiology: the gain is more than the name. Trends Plant Sci 12:135–136

    Article  Google Scholar 

  • Brooks R (1999) Cambrian intelligence. MIT, Cambridge, MA

    Google Scholar 

  • Calvo Garzón P (2007) The quest for cognition in plant neurobiology. Plant Signal Behav 2:208–211

    Article  Google Scholar 

  • Calvo Garzón P, Gomila T (eds) (2008) Handbook of cognitive science: an embodied approach. Elsevier, Amsterdam

    Google Scholar 

  • Carruthers P (2004) On being simple minded. Am Philos Quart 41:205–220

    Google Scholar 

  • Cashmore AR (2003) Cryptochromes: enabling plants and animals to determine circadian time. Cell 114:537–543

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti BK, Dutta O (2003) An electrical network model of plant intelligence. Ind J Phys 77A:549–551

    CAS  Google Scholar 

  • Clark A (1997) Being there: putting brain, body, and world together again. MIT, Cambridge, MA

    Google Scholar 

  • Corning P (2003) Natures magic. Synergy in evolution and the fate of humankind. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Darwin C (1875) Insectivorous plants. John Murray, Edinburgh

    Book  Google Scholar 

  • Darwin C (1880) The power of movements in plants. John Murray, Edinburgh

    Google Scholar 

  • Dennett DC (1984) Elbow room: the varieties of free will worth wanting. Bradford, Cambridge

    Google Scholar 

  • Dennett DC (1996) Kinds of minds. Basic, New York

    Google Scholar 

  • Di Paolo EA (2005) Autopoiesis, adaptivity, teleology, agency. Phenomen Cogn Sci 4:97–125

    Google Scholar 

  • Di Primio F, Müller BS, Lengeler JW (2000) Minimal cognition in unicellular organisms. In: Meyer JA, Berthoz A, Floreano D, Roitblat HL, Wilson SW (eds) SAB2000 Proceedings Supplement. International Society for Adaptive Behavior, Hawaii, pp 3–12

    Google Scholar 

  • Firn R (2004) Plant intelligence: an alternative viewpoint. Ann Bot 93:345–351

    Article  PubMed  Google Scholar 

  • Godfrey-Smith P (1996) Complexity and the function of mind in nature. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Godfrey-Smith P (2001) Environmental complexity and the evolution of cognition. In: Sternberg R, Kaufman J (eds) The evolution of intelligence. Lawrence Elrbaum, London

    Google Scholar 

  • Gould JL, Gould CG (1998) Reasoning in animals. Sci Am Presents 9:52–59

    Google Scholar 

  • Greengard P (2001) The neurobiology of slow synaptic transmission. Science 294:1024–1030

    Article  PubMed  CAS  Google Scholar 

  • Greenspan RJ, van Swinderen B (2004) Cognitive consonance: complex brain functions in the fruit fly and its relatives. Trends Neurosci 27:707–711

    Article  PubMed  CAS  Google Scholar 

  • Haberlandt G (1890) Das reizleitende Gewebesystem der Sinnpflanze. Engelmann, Leipzig

    Google Scholar 

  • Heinrich B (2000) Testing insight in ravens. In: Heyes C, Huber L (eds) The evolution of cognition. MIT, Cambridge, MA

    Google Scholar 

  • Hofstadter DR (1985) On the seeming paradox of mechanizing creativity. In: Metamagical themas: questing for the essence of mind and pattern. Penguin, London, pp 526–546

    Google Scholar 

  • Hurley SL (1998) Consciousness in action. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Jonas H (1966) The phenomenon of life: toward a philosophical biology. Harper and Row, New York

    Google Scholar 

  • Jonas H (1968) Biological foundations of individuality. Int Philos Quart 8:231–251

    Google Scholar 

  • Keijzer FA (2001) Representation and behavior. MIT, Cambridge

    Google Scholar 

  • Keijzer FA (2003) Making decisions does not suffice for minimal cognition. Adapt Behav 11:266–269

    Article  Google Scholar 

  • Keijzer FA (2006) Differentiating animality from agency: towards a foundation for cognition. In: Sun R, Miyake N (eds) Proc CogSci/ICCS 2006. Sheridan Printin, Alpha, pp 1593–1598

    Google Scholar 

  • Lengeler JW, Müller BS, di Primio F (2000) Neubewertung kognitiver Leistungen im Lichte der Fähigkeiten einzelliger Lebewesen. Kognitionswissenschaft 8:160–178

    Article  Google Scholar 

  • Li X, Zhang WS (2008) Salt-avoidance tropism in Arabidopsis thalania. Plant Signal Behav 3:351–353

    Article  PubMed  Google Scholar 

  • Lyon P (2006a) The agent in the organism (dissertation). Australian National University, Canberra

    Google Scholar 

  • Lyon P (2006b) The biogenic approach to cognition. Cogn Process 7:11–29

    Article  Google Scholar 

  • Massa G, Gilroy S (2003) Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana. Plant J 33:435–445

    Article  PubMed  Google Scholar 

  • Menzel R, Giurfa M, Brembs B (2007) Cognition in invertebrates. In: Strausfeld NJ, Bullock TH (eds) The evolution of nervous systems, vol 2: evolution of nervous systems in invertebrates. Elsevier, Amsterdam

    Google Scholar 

  • Merleau Ponty M (1963) The structure of behaviour. Duquesne University Press, Pittsburgh

    Google Scholar 

  • Moreno A, Etxeberria A (2005) Agency in natural and artificial systems. Artif Life 11:161–176

    Article  PubMed  Google Scholar 

  • Moreno A, Umerez J, Ibañez J (1997) Cognition and life. The autonomy of cognition. Brain Cogn 34:107–129

    Article  PubMed  CAS  Google Scholar 

  • Müller BS, di Primio F, Lengeler JW (2001) Contributions of minimal cognition to flexibility. In: Callaos N, Badawy W, Bozinovski S (eds) SCI 2001 Proceedings of the 5th World Multi-Conference on Systemics, Cybernetics and Informatics, Volume XV, Industrial Systems: Part II. International Institute of Informatics and Systemics, Orlando, pp 93–98

    Google Scholar 

  • Neisser U (1967) Cognitive psychology. Appleton-Century Crofts, New York

    Google Scholar 

  • Neumann PM (2006) The role of root apices in shoot growth regulation: support for neurobiology at the whole plant level? In: Baluška F, Mancuso S, Volkmann D (eds) Communication in plants: neuronal aspects of plant life. Springer, Berlin

    Google Scholar 

  • O'Regan JK, Noë A (2001) A sensorimotor account of vision and visual consciousness. Behav Brain Sci 24:939–1011

    Article  Google Scholar 

  • Palmgren MG (2001) Plant plasma membrane H+-ATPases; powerhouses for nutrient uptake. Annu Rev Plant Physiol 52:817–845

    Article  CAS  Google Scholar 

  • Pfeffer W (1906) The physiology of plants: a treatise upon the metabolism and sources of energy in plants. Clarendon, Oxford

    Google Scholar 

  • Pfeifer R, Scheier C (2001) Understanding intelligence. MIT, Cambridge, MA

    Google Scholar 

  • Pickard BG (1973) Action potentials in higher plants. Bot Rev 39:172–201

    Article  Google Scholar 

  • Prescott TJ, Redgrave P, Gurney K (1999) Layered control architectures in robots and vertebrates. Adapt Behav 7:99–127

    Article  Google Scholar 

  • Pruitt R, Bowman J, Grossniklaus U (2003) Plant genetics: a decade of integration. Nat Genet 33:294–304

    Article  PubMed  CAS  Google Scholar 

  • Rosen BE, Goodwin JM, Vidal JJ (1990) Transcendental functions in backward error propagation. Proc IEEE Int Conf Syst Man Cybern 4–7:239–241

    Article  Google Scholar 

  • Roth G, Wullimann MF (eds) (2001) Brain evolution and cognition. Wiley, New York

    Google Scholar 

  • Rumelhart DE, McClelland JL, PDP Research Group (1986) Parallel distributed processing: explorations in the microstructure of cognition, vol. 1. MIT Press, Cambridge, MA

    Google Scholar 

  • Schwartz A, Koller D (1986) Diurnal phototropism in solar tracking leaves of Lavatera cretica. Plant Physiol 80:778–781

    Article  PubMed  CAS  Google Scholar 

  • Shettleworth SJ (1998) Cognition, evolution, and behavior. Oxford University Press, New York

    Google Scholar 

  • Smirnova AA, Lazareva OF, Zorina ZA (2003) Prototype symbolization in hooded crows. Neurosci Behav Physiol 33:335–348

    Article  PubMed  CAS  Google Scholar 

  • Stahlberg E (2006) Historical overview on plant neurobiology. Plant Signal Behav 1:6–8

    Article  PubMed  Google Scholar 

  • Stanton ML, Galen C (1993) Blue light controls solar tracking by flowers of an alpine plant. Plant Cell Environ 16:983–989

    Article  Google Scholar 

  • Sterelny K (2001) The evolution of agency and other essays. Cambridge University Press, Cambridge

    Google Scholar 

  • Todar K (2004) Todar's online textbook of bacteriology. Department of Bacteriology, University of Wisconsin-Madison, Madison (see http://www.textbookofbacteriology.net/,accessed 27 Sept 2005)

    Google Scholar 

  • Trebacz K, Dziubinska H, Krol E (2006) Electrical signals in long-distance communication in plants. In: Baluška F, Mancuso S, Volkmann D (eds) Communication in plants: neuronal aspects of plant life. Springer, Berlin

    Google Scholar 

  • Trewavas A (2003) Aspects of plant intelligence. Ann Bot 92:1–20

    Article  PubMed  CAS  Google Scholar 

  • Trewavas A (2005) Green plants as intelligent organisms. Trends Plant Sci 10:413–419

    Article  PubMed  CAS  Google Scholar 

  • Trewavas A (2007) Plant neurobiology: all metaphors have value. Trends Plant Sci 12:231–233

    Article  PubMed  CAS  Google Scholar 

  • Van Duijn M, Keijzer F, Franken D (2006) Principles of minimal cognition: casting cognition as sensorimotor coordination. Adapt Behav 14:157–170

    Article  Google Scholar 

  • Varela FJ, Thompson JE, Rosch E (1991) The embodied mind. MIT Press, Cambridge, MA

    Google Scholar 

  • Volkov AG, Brown CL (2006) Electrochemistry of plant life. In: Volkov A (ed) Plant electrophysiology: theory and methods. Springer, Berlin

    Chapter  Google Scholar 

Download references

Acknowledgments

Fred Keijzer wants to thank Pamela Lyon, Marc van Duijn and Daan Franken for their helpful comments and discussion. The preparation of this chapter was supported in part by DGICYT Project HUM2006-11603-C02-01 (Spanish Ministry of Science and Education and Feder Funds) to Paco Calvo Garzón.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paco Calvo Garzón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Garzón, P., Keijzer, F. (2009). Cognition in Plants. In: Balu¿ka, F. (eds) Plant-Environment Interactions. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89230-4_13

Download citation

Publish with us

Policies and ethics