Skip to main content

Integrated Calcium Signaling in Plants

  • Chapter
  • First Online:
Signaling in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Calcium ion (Ca2+) is the most important universal signal carrier used by living organisms, including plants, to convey information to many different cellular processes. The cytosolic free Ca2+ concentration ([Ca2+]cyt) has been found to increase in response to many physiological stimuli, including stress. The Ca2+ spikes normally result from two opposing reactions, Ca2+ influx through channels or Ca2+ efflux through pumps. The removal of increased Ca2+ from the cytosol to either the apoplast or intracellular organelles requires energized “active” transport. Ca2+-ATPases and Ca2+/H+ antiporters are the key proteins catalyzing this movement. The increased level of Ca2+ is recognized by some Ca2+ sensors or calcium-binding proteins, which can activate many calcium-dependent protein kinases. The regulation of gene expression by cellular Ca2+ is also crucial for plant defense against various stresses. In this chapter several aspects of calcium signaling, such as Ca2+ requirement, Ca2+ transporters/pumps (Ca2+-ATPases, Ca2+/H+ antiporter), Ca2+ signature, Ca2+ memory, and various Ca2+-binding proteins, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen GJ, Kwak JM, Chu SP, Llopis J, Tsien RY, Harper JF, Schroeder JI (1999) Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant J 19:735–747

    Article  PubMed  CAS  Google Scholar 

  • Axelsen KB, Palmgren MG (2001) Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol 126:696–706

    Article  PubMed  CAS  Google Scholar 

  • Baluska FS, Amaj J, Napier R, Volkmann D (1999) Maize calreticulin localizes preferentially to plasmodesmata in root apex. Plant J 19:481–488

    Article  PubMed  CAS  Google Scholar 

  • Blume B, Nürnberger T, Nass N, Scheel D (2000) Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12:1425–1440

    Article  PubMed  CAS  Google Scholar 

  • Borisjuk N, Sitailo L, Adler K, Malysheva L, Tewes A, Borisjuk L, Manteuffel R (1998) Calreticulin expression in plant cells: developmental regulation, tissue specificity and intracellular distribution. Planta 206:504–514

    Article  PubMed  CAS  Google Scholar 

  • Bouché N, Scharlat A, Snedden W, Bouchez D, Fromm H (2002) A novel family of calmodulin-binding transcription activators in multicellular organisms. J Biol Chem 277:21851–21861

    Article  PubMed  CAS  Google Scholar 

  • Bush DS (1995) Calcium regulation in plant cells and its role in signaling. Ann Rev Plant Physiol Plant Mol Biol 46:95–122

    Article  CAS  Google Scholar 

  • Chen F, Hayes PM, Mulrooney DM, Pan A (1994) Identification and characterization of cDNA clones encoding plant calreticulin in barley. Plant Cell 6:835–843

    Article  PubMed  CAS  Google Scholar 

  • Chena X, Lina, WH, Wanga Y, Luana S, Xuea HW (2008) An inositol polyphosphate 5-phosphatase functions in PHOTOTROPIN1 signaling in Arabidopsis by altering cytosolic Ca2+ [W]. Plant Cell 20:353–366

    Article  CAS  Google Scholar 

  • Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485

    Article  PubMed  CAS  Google Scholar 

  • Clark GB, Roux SJ (1995) Annexins of plant cells. Plant Physiol 109:1133–1139

    Article  PubMed  CAS  Google Scholar 

  • Coughlan SJ, Hastings C, Winfrey RW Jr (1997) Cloning and characterization of the calreticulin gene from Ricinus communis L. Plant Mol Biol 34:897–911

    Article  PubMed  CAS  Google Scholar 

  • Denecke J, Carlsson LE, Vidal S, Hoglund AS, Ek B, van Zeijl MJ, Sinjorgo KM, Palva ET (1995) The tobacco homolog of mammalian calreticulin is present in protein complexes in vivo. Plant Cell 7:391–406

    Article  PubMed  CAS  Google Scholar 

  • Denis V, Cyert MS (2002) Internal Ca2+ release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue. J Cell Biol 156:29–34

    Article  PubMed  CAS  Google Scholar 

  • Dresselhaus T, Hagel C, Lorz H, Kranz E (1996) Isolation of a full-length cDNA encoding calreticulin from a PCR library of in vitro zygotes of maize. Plant Mol Biol 31:23–34

    Article  PubMed  CAS  Google Scholar 

  • Eckardt NA (2001) A calcium-regulated gatekeeper in phloem sieve tubes. Plant Cell 13:989–992

    Article  PubMed  CAS  Google Scholar 

  • Ehtesham NZ, Phan TN, Gaikwad A, Sopory SK, Tuteja N (1999) Calnexin from Pisum sativum: cloning of the cDNA and characterization of the encoded protein. DNA Cell Biol 18:853–862

    Article  PubMed  CAS  Google Scholar 

  • Furch AC, Hafke JB, Schulz A, van Bel AJ (2007) Ca2+-mediated remote control of reversible sieve tube occlusion in Vicia faba. J Exp Bot 58:2827–2838

    Article  PubMed  CAS  Google Scholar 

  • Furuyama T, Dzelzkalns VA (1999) A novel calcium-binding protein is expressed in Brassica pistils and anthers late in flower development. Plant Mol Biol 39:729–737

    Article  PubMed  CAS  Google Scholar 

  • Garciadeblas B, Benito B, Rodríguez-Navarro A (2001) Plant cells express several stress calcium ATPases but apparently no sodium ATPase. Plant Soil 235:181–192

    Article  CAS  Google Scholar 

  • Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, Furch AC, Hafke JB, Schulz A, van Bel AJ (2007) Ca2+-mediated remote control of reversible sieve tube occlusion in Vicia faba. J Exp Bot 58:2827–2838

    Article  CAS  Google Scholar 

  • Goode JH, Settlage SB, Wilson RF, Dewey RE (1995) Isolation of a calnexin homolog from developing soybean seeds. Plant Physiol 108:1341

    Google Scholar 

  • Górecka KM, Trebacz K, Górecki R, Pikula S (2007a) Participation of annexin At1 in plant response to abiotic stress. Postepy Biochem 53:154–158

    Google Scholar 

  • Gorecka KM, Thouverey C, Buchet R, Pikula S (2007b) Potential role of annexin AnnAt1 from Arabidopsis thaliana in pH-mediated cellular response to environmental stimuli. Plant Cell Physiol 48:792–803

    Article  CAS  Google Scholar 

  • Harada A, Shimazaki K (2007) Phototropins and blue light-dependent calcium signaling in higher plants. Photochem Photobiol 83:102–111

    PubMed  CAS  Google Scholar 

  • Harmon AC, Gribskov M, Gubrium E, Harper JF (2001) The CDPK superfamily of protein kinases. New Phytol 151:175–183

    Article  CAS  Google Scholar 

  • Harper JF (2001) Dissecting calcium oscillators in plant cells. Trends Plant Sci 6:395–397

    Article  PubMed  CAS  Google Scholar 

  • Harper JF, Huang JF, Lloyd SJ (1994) Genetic identification of an auto inhibitor in CDPK, a protein kinase with a calmodulin like domain. Biochemistry 33:7278–7287

    Article  Google Scholar 

  • Hassan AM, Wesson C, Trumble WR (1995) Calreticulin is the major Ca2+-storage protein in the endoplasmic reticulum of the pea plant (Pisum sativum). Biochem Biophys Res Commun 211:54–59

    Article  PubMed  CAS  Google Scholar 

  • Hirschi K (2001) Vacuolar H+/Ca2+ transport: who's directing the traffic? Trends Plant Sci 6:100–104

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Franklin AE, Hoffman NE (1993) Primary structure and characterization of an Arabidopsis thaliana calnexin-like protein. J Biol Chem 268:6560–6566

    PubMed  CAS  Google Scholar 

  • Hwang I, Sze H, Harper JF (2000) A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis. Proc Natl Acad Sci U S A 97:6224–6229

    Article  PubMed  CAS  Google Scholar 

  • Jeong JC, Shin D, Lee J, Kang CH, Baek D, Cho MJ, Kim MC, Yun DJ (2007) Isolation and characterization of a novel calcium/calmodulin-dependent protein kinase, AtCK, from Arabidopsis. Mol Cells 24:276–282

    PubMed  CAS  Google Scholar 

  • Jia X-Y, Xu C-Y, Jing R-L, Li R-Z, Mao X-G, Wang J-P, Chang X-P (2008) Molecular cloning and characterization of wheat calreticulin (CRT) gene involved in drought stressed responses. J Exp Bot 59:739–751

    Article  PubMed  CAS  Google Scholar 

  • Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell 18:2733–2748

    Article  PubMed  CAS  Google Scholar 

  • Katou S, Kuroda K, Seo S, Yanagawa Y, Tsuge T, Yamazaki M, Miyao A, Hirochika H, Ohashi Y (2007) A calmodulin-binding mitogen-activated protein kinase phosphatase is induced by wounding and regulates the activities of stress-related mitogen-activated protein kinases in rice. Plant Cell Physiol 48:332–344

    Article  PubMed  CAS  Google Scholar 

  • Katiyar-Agarwal S, Zhu j, Kim K, Agarwal M, Fu X, Huang A, Zhu JK (2006) The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc Natl Acad Sci U S A 103:18816–18821

    Article  PubMed  CAS  Google Scholar 

  • Kim KN, Cheong YH, Gupta R, Luan S (2000) Interaction specificity of Arabidopsis calcineurine B-like calcium sensor and their target kinases. Plant Physiol 124:1844–1853

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8:489–503

    Article  PubMed  CAS  Google Scholar 

  • Knoblauch M, Peters WS, Ehlers K, Van Bel AJE (2001) Reversible calcium-regulated stopcocks in legume sieve tubes. Plant Cell 13:1221–1230

    Article  PubMed  CAS  Google Scholar 

  • Knoblauch M, Noll GA, Müller T, Prüfer D, Schneider-Hüther I, Scharner D, Van Bel AJE, Peters WS (2003) ATP-independent contractile proteins from plants. Nat Mater 2:573–574

    Article  CAS  Google Scholar 

  • Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J (2004) Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL–CIPK signaling networks. Plant Physiol 134:43–58

    Article  PubMed  CAS  Google Scholar 

  • Kretsinger RH, Nockolds CE (1973) Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem 248:3313–3326

    PubMed  CAS  Google Scholar 

  • Kudla J, Xu Q, Harter K, Gruissem W, Luan S (1999) Genes for calcineurin B-like proteins in Arabidopsis are di.erentially regulated by stress signals. Proc Natl Acad Sci U S A 96:4718–4723

    Article  PubMed  CAS  Google Scholar 

  • Kwiatkowski BA, Zielinkska-Kwiatkowska AG, Migdalski A, Kleczkowski LA, Wasilweska LD (1995) Cloning of two cDNAs encoding calnexin-like proteins from maize (Zea mays) leaves: identification of potential calcium-binding domains. Gene 65:219–222

    Article  Google Scholar 

  • Li Z, Komatsu S (2000) Molecular cloning and characterization of calreticulin, a calcium-binding protein involved in the regeneration of rice cultured suspension cells. Eur J Biochem 267:737–745

    Article  PubMed  CAS  Google Scholar 

  • Li W, Llopis J, Whitney M, Zlokarnik G, Tsien RY (1998) Cell permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature 392:936–941

    Article  PubMed  CAS  Google Scholar 

  • Lim CO, Kim HY, Kim MG, Lee SI, Chung WS, Park SH, Hwang I, Cho MJ (1996) Expressed sequence tags of Chinese cabbage flower bud cDNA. Plant Physiol 111:577–588

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Zhu JK (1998) A calcium sensor homolog required for plant salt tolerance. Science 280:1943–1945

    Article  PubMed  CAS  Google Scholar 

  • Liu HT, Li GL, Chang H, Sun DY, Zhou RG, Li B (2007) Calmodulin-binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis. Plant Cell Environ 30:156–64

    Article  PubMed  CAS  Google Scholar 

  • Liu HT, Gao F, Li G-L, Han J-L, Liu De-L, Sun Da-Y, Zhou R-G (2008) The calmodulin-binding protein kinase 3 is part of heat shock signal transduction in Arabidopsis thaliana. Plant J 55:760–773

    Article  PubMed  CAS  Google Scholar 

  • Lu YT, Hidaka H, Feldman LJ (1996) Characterization of a calcium/calmodulin protein kinase homologue from maize roots showing light-regulated gravitropism. Planta 199:18–24

    Article  PubMed  CAS  Google Scholar 

  • Luan S, Kudla J, Rodríguez-Concepción M, Yalovsky S, Gruissem W (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14:S389–S400

    PubMed  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  PubMed  CAS  Google Scholar 

  • Mahajan S, Sopoy SK, Tuteja N (2006a) CBL–CIPK paradigm: role in calcium and stress signaling in plants. Proc Indian Natl Sci Acad U S A 72:63–78

    CAS  Google Scholar 

  • Mahajan S, Sopoy SK, Tuteja N (2006b) Cloning and characterization of CBL–CIPK signaling components from a legume (Pisum sativum) FEBS J 273:907–925

    Article  CAS  Google Scholar 

  • Mahajan S, Pandey GK, Tuteja N (2008) Calcium- and salt-stress signaling in plants: Shedding light on SOS pathway. Arch Biochem Biophys 471:146–158

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Noel G, Tognetti J, Nagaraj V, Wiemken A, Pontis H (2006) Calcium is essential for fructan synthesis induction mediated by sucrose in wheat. Planta 225:183–191

    Article  PubMed  CAS  Google Scholar 

  • Menegazzi P, Guzzo F, Baldan B, Mariani P, Treves S (1993) Purification of calreticulin-like protein(s) from spinach leaves. Biochem Biophy Res Commun 190:130–1135

    Article  Google Scholar 

  • Moore CA, Bowen HC, Scrase-Field S, Knight MR, White PJ (2002) The deposition of suberin lamellae determines the magnitude of cytosolic Ca2+ elevations in root endodermal cells subjected to cooling. Plant J 30:457–466

    Article  PubMed  CAS  Google Scholar 

  • Napier RM, Trueman S, Henderson J, Boyce JM, Hawes C, Fricker MD, Venis MA (1995) Purification, sequencing and functions of calreticulin from maize. J Exp Bot 46:1603–1613

    Article  CAS  Google Scholar 

  • Nardi MC, Feron R, Navazio L, Mariani P, Pierson E, Wolters-Arts M, Knuiman B, Mariani C, Derksen J (2006) Expression and localization of calreticulin in tobacco anthers and pollen tubes. Planta 223:1263–1271

    Article  PubMed  CAS  Google Scholar 

  • Noll GA, Fontanellaz ME, Rüping B, Ashoub A, van Bel AJ, Fischer R, Knoblauch M, Prüfer D (2007) Spatial and temporal regulation of the forisome gene for1 in the phloem during plant development. Plant Mol Biol 65:285–294

    Article  PubMed  CAS  Google Scholar 

  • Opas M, Szewczenko-Pawlikowski M, Jass GH, Mesaeli N, Michalak M (1996) Calreticulin modulates cellular adhesiveness via regulation of expression of vinculin. J Cell Biol 135:1–11

    Article  Google Scholar 

  • Ostwald TJ, MacLennan DH (1974) Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J Biol Chem 249:974–979

    PubMed  CAS  Google Scholar 

  • Pardo JM, Reddy MP, Yang S, Maggio A, Huh GH, Matsumoto T, Coca MA et al (1998) Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc Natl Acad Sci U S A 95:9681–9686

    Article  PubMed  CAS  Google Scholar 

  • Peters WS, Knoblauch M, Warmann SA, Schnetter R, Shen AQ, Pickard WF (2007) Tailed forisomes of Canavalia gladiata: a new model to study Ca2+-driven protein contractility. Ann Bot 100:101–109

    Article  PubMed  CAS  Google Scholar 

  • Poovaiah BW, Reddy ASN (1993) Calcium and signal transduction in plants. Crit Rev Plant Sci 12:185–211

    Article  PubMed  CAS  Google Scholar 

  • Price AH, Taylor A, Ripley SJ, Griffiths A, Trewavas AJ, Knight MR (1994) Oxidative signals in tobacco increase cytosolic calcium. Plant Cell 6:1301–1310

    Article  PubMed  CAS  Google Scholar 

  • Rasi-Caldogno F, Carnelli A, DeMichelis MI (1995) Identification of the plasma membrane Ca2+ ATPase and of its autoinhibitory domain. Plant Physiol 108:105–113

    PubMed  CAS  Google Scholar 

  • Ritchie SM, Swanson SJ, Gilroy S (2002) From common signalling components to cell specific responses: insights from the cereal aleurone. Physiol Plant 115:342–351

    Article  PubMed  CAS  Google Scholar 

  • Rudd JJ, Franklin-Tong VE (2001) Unravelling response-specificity in Ca2+ signalling pathways in plant cells. New Phytol 151:7–33

    Article  CAS  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14(Suppl):S401–S417

    PubMed  CAS  Google Scholar 

  • Sarwat M, Tuteja N (2007) Calnexin: a versatile calcium binding integral membrane-bound chaperone of endoplasmic reticulum. Calcium Binding Proteins 2:36–50

    Google Scholar 

  • Tang R-H, Han S, Zheng H, Cook CW, Choi CS, Woerner TE, Jackson RB, Zhen-Ming Peil Z-M (2007) Coupling diurnal cytosolic Ca2+ oscillations to the CAS蜢 IP3 pathway in Arabidopsis. Science 315:1423–1426

    Article  PubMed  CAS  Google Scholar 

  • Trewavas A (1999) Le calcium, c'est la vie: calcium makes waves. Plant Physiol 120:1–6

    Article  PubMed  CAS  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438

    Article  PubMed  CAS  Google Scholar 

  • Tuteja N, Mahajan S (2007) Further characterization of calcineurin B-like protein and its interacting partner CBL-interacting protein kinase from Pisum sativum. Plant Signal Behav 2:358–361

    PubMed  Google Scholar 

  • Wang X (2001) Plant phospholipases. Annu Rev Plant Physiol Plant Mol Biol 52:211–231

    Article  PubMed  CAS  Google Scholar 

  • Wyatt SE, Tsou PL, Robertson D (2002) Expression of the high capacity calcium-binding domain of calreticulin increases bioavailable calcium stores in plants. Transgen Res 11:1–10

    Article  CAS  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183

    Article  PubMed  CAS  Google Scholar 

  • Xiong TC, Bourque S, Lecourieux D, Amelot N, Grat S, Briere C, Mazars C, Pugin A, Ranjeva R (2006) Calcium signaling in plant cell organelles delimited by a double membrane. Biochim Biophys Acta 1763:1209–1215

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2002) A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J Biol Chem 277:45049–45058

    Article  PubMed  CAS  Google Scholar 

  • Yoo JH, Park CY, Kim JC, Heo WD, Cheong MS, Park HC, Kim MC, Moon BC, Choi MS, Kang YH, Lee JH, Kim HS, Lee SM, Yoon HW, Lim CO, Yun DJ, Lee SY, Chung WS, Cho MJ (2005) Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in arabidopsis. J Biol Chem 280:3697–3706

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Lu YT (2003) Calmodulin-binding protein kinases in plants. Trends Plant Sci 8:123–127

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y-Q, Rao R (2008) A spoke in the wheel: Calcium spikes disrupt yeast cell cycle. Cell Cycle 7:870–873.

    PubMed  CAS  Google Scholar 

  • Zielinski RE (1998) Calmodulin and calmodulin-binding proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 49:697–725

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank Renu Tuteja for critical reading of and corrections to the article. This work was partially supported by the grant from the Department of Biotechnology (DBT), Government of India. I apologize to the many scientists whose work I was not able to credit owing to space restrictions. In most cases, reviews have been cited at the expense of the original work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Tuteja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tuteja, N. (2009). Integrated Calcium Signaling in Plants. In: Mancuso, S., Balu¿ka, F. (eds) Signaling in Plants. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89228-1_2

Download citation

Publish with us

Policies and ethics