Skip to main content

Signaling in Phototropism

  • Chapter
  • First Online:
Signaling in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

  • 1182 Accesses

Abstract

Land plants cope with the same environmental challenges as animals but have the added complication of being fixed to the ground. Thus, adaptability to variable environmental circumstances is essential to plant survival and fitness. A consequence of this condition is the necessity of plants to possess sophisticated sensors to adjust to changes. Plants take the input from their myriad of physiological sensors and respond physiologically. Among these responses are the tropisms, or directional growth responses that are oriented relative to a directional stimulus. Phototropism is among one of the best-studied tropic responses where plant tissues perceive and grow directionally upon perception of a directional light stimulus - positively, or towards the light source, in the case of shoots and negatively, or away from the light source, in the case of roots. From a historical perspective, the phototropic phenomenon has been known for hundreds of years (Whippo and Hangarter in Plant Cell 18:1110–1119, 2006). Yet, only in the past few decades has the phenomenon been carefully studied to the extent that the basis of this response has become clearer. While recent analyses have yielded detailed biochemical mechanisms for some of the phototropic receptors, a great deal remains unknown. In this review of phototropism in plants, the focus is on the growth of our understanding of phototropism from the simple observations of plant growth, to the initial physiological experiments, to the most recent detailed molecular mechanisms. With the advances in genetic and molecular tools we are now in a position to understand the nature of phototropic signaling and its regulation in great detail. Over the past few years we have come to learn much about the complex interplay of molecules, including the photoreceptors, accessory proteins, transcription factors, and effector molecules necessary to perceive the light cues, modulate signaling, activate gene transcription, and elicit physiological change. While some of these players are known, undoubtedly a role for many others will emerge in future studies and such advances will provide new avenues of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111:9–17

    Article  PubMed  CAS  Google Scholar 

  • Ahmad M, Jarillo JA et al (1998) Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism. Nature 392:720–723

    Article  PubMed  CAS  Google Scholar 

  • Albagli O, Dhordain P et al (1995) The BTB/POZ domain: a new protein-protein interaction motif common to DNA- and actin-binding proteins. Cell Growth Differ 6:1193–1198

    PubMed  CAS  Google Scholar 

  • Alexandre MT, Arents JC et al (2007) A base-catalyzed mechanism for dark state recovery in the Avena sativa phototropin-1 LOV2 domain. Biochemistry 46:3129–3137

    Article  PubMed  CAS  Google Scholar 

  • Assmann SM (1993) Signal transduction in guard cells. Annu Rev Cell Biol 9:345–375

    Article  PubMed  CAS  Google Scholar 

  • Babourina O, Newman I et al (2002) Blue light-induced kinetics of H+ and Ca2+ fluxes in etiolated wild-type and phototropin-mutant Arabidopsis seedlings. Proc Natl Acad Sci U S A 99:2433–2438

    Article  PubMed  CAS  Google Scholar 

  • Ballario P, Talora C et al (1998) Roles in dimerization and blue light photoresponse of the PAS and LOV domains of Neurospora crassa white collar proteins. Mol Microbiol 29:719–729

    Article  PubMed  CAS  Google Scholar 

  • Blaauw O, Blaauw-Jansen G (1964) The influence of red light on the phototropism of Avena coleoptiles. Acta Bot Neerl 13:541–552

    Google Scholar 

  • Blaauw-Jansen G (1959) The influence of red and far red light on growth and phototropism of the Avena seedling. Acta Bot Neerl 8:1–39

    Google Scholar 

  • Blakeslee JJ, Bandyopadhyay A et al (2004) Plant Physiol 134:28–31

    Article  PubMed  CAS  Google Scholar 

  • Boccalandro H, De Simone S et al (2007) PHYTOCHROME KINASE SUBSTRATE1 regulates root phototropism and gravitropism. Plant Physiol 146:108–115

    Article  PubMed  CAS  Google Scholar 

  • Boysen-Jensen P (1910) Ueber die Leitung der phototropischen Reizes in Avenakeimpflanzen. Ber Dtsch Bot Ges 28:118–120

    Google Scholar 

  • Boysen-Jensen P (1913) Ueber die Leitung der phototropischen Reizes in der Avenakoleoptile. Ber Dtsch Bot Ges 31:559–566

    Google Scholar 

  • Briggs WR, Beck CF et al (2001) The phototropin family of photoreceptors. Plant Cell 13:993–997

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Lin WH et al (2008) An inositol polyphosphate 5-phosphatase functions in PHOTOTROPIN1 signaling in Arabidopis by altering cytosolic Ca2+. Plant Cell 20:353–366

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Qin G et al (2007) NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in Arabidopsis. Proc Natl Acad Sci U S A 104:18825–18829

    Article  PubMed  Google Scholar 

  • Cho H, Tseng T et al (2007) Physiological roles of the light, oxygen, or voltage domains of phototropin 1 and phototropin 2 in Arabidopsis. Plant Physiol 143:517–529

    Article  PubMed  CAS  Google Scholar 

  • Cholodny N (1927) Wuchshormone und Tropismem bei den Planzen. Biol Zentralbl 47:604–626

    CAS  Google Scholar 

  • Chon HP, Briggs W (1966) Effect of red light on the phototropic sensitivity of corn coleoptiles. Plant Physiol 41:1715–1724

    Article  PubMed  Google Scholar 

  • Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45

    Article  PubMed  CAS  Google Scholar 

  • Christie JM, Corchnoy SB et al (2007) Steric interactions stabilize the signaling state of the LOV2 domain of phototropin 1. Biochemistry 46:9310–9319

    Article  PubMed  CAS  Google Scholar 

  • Christie JM, Reymond P et al (1998) Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism. Science 282:1698–1701

    Article  PubMed  CAS  Google Scholar 

  • Christie JM, Salomon M et al (1999) LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. Proc Natl Acad Sci U S A 96:8779–8783

    Article  PubMed  CAS  Google Scholar 

  • Christie JM, Swartz TE et al (2002) Phototropin LOV domains exhibit distinct roles in regulating photoreceptor function. Plant J 32:205–219

    Article  PubMed  CAS  Google Scholar 

  • Corchnoy SB, Swartz TE et al (2003) Intramolecular proton transfers and structural changes during the photocycle of the LOV2 domain of phototropin 1. J Biol Chem 278:724–731

    Article  PubMed  CAS  Google Scholar 

  • Correll MJ, Coveney KM et al (2003) Phytochromes play a role in phototropism and gravitropism in Arabidopsis roots. Adv Space Res 31:2203–2210

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove D (1981) Rapid suppression of growth by blue light. Plant Physiol 67:584–590

    Article  PubMed  Google Scholar 

  • Crosson S, Moffat K (2001) Structure of a flavin-binding plant photoreceptor domain: insights into light-mediated signal transduction. Proc Natl Acad Sci U S A 98:2995–3000

    Article  PubMed  CAS  Google Scholar 

  • Crosson S, Moffat K (2002) Photoexcited structure of a plant photoreceptor domain reveals a light-driven molecular switch. Plant Cell 14:1067–1075

    Article  PubMed  CAS  Google Scholar 

  • Darwin C (1880) The power of movement in plants (London: John Murray)

    Google Scholar 

  • DeBlasio SL, Luesse DL et al (2005) A plant-specific protein essential for blue-light-induced chloroplast movements. Plant Physiol 139:101–114

    Article  PubMed  CAS  Google Scholar 

  • Dharmasiri N, Dharmasiri S et al (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  PubMed  CAS  Google Scholar 

  • Dittrich M, Freddolino PL et al (2005) When light falls in LOV: a quantum mechanical/molecular mechanical study of photoexcitation in Phot-LOV1 of Chlamydomonas reinhardtii. J Phys Chem B 109:13006–13013

    Article  PubMed  CAS  Google Scholar 

  • Eitoku T, Nakasone Y et al (2005) Conformational dynamics of phototropin 2 LOV2 domain with the linker upon photoexcitation. J Am Chem Soc 127:13238–13244

    Article  PubMed  CAS  Google Scholar 

  • Eitoku T, Nakasone Y et al (2007) Photochemical intermediates of Arabidopsis phototropin 2 LOV domains associated with conformational changes. J Mol Biol 371:1290–1303

    Article  PubMed  CAS  Google Scholar 

  • Emi T, Kinoshita T et al (2005) Isolation of a protein interacting with Vfphot1a in guard cells of Vicia faba. Plant Physiol 138:1615–1626

    Article  PubMed  CAS  Google Scholar 

  • Engelmann W, Simon K, Phen CJ (1992) Leaf movement rhythms in Arabidopsis thaliana. Z Naturforsch 47c:925–928

    Google Scholar 

  • Esmon CA, Tinsley AG et al (2006) A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc Natl Acad Sci U S A 103:236–241

    Article  PubMed  CAS  Google Scholar 

  • Evans ML, Rayle DL (1970) The timing of growth promotion and conversion to indole-3-acetic acid for auxin precursors. Plant Physiol 45:240–243

    Article  PubMed  CAS  Google Scholar 

  • Faux MC, Scott JD (1996) Molecular glue: kinase anchoring and scaffold proteins. Cell 85:9–12

    Article  PubMed  CAS  Google Scholar 

  • Fedorov R, Schlichting I et al (2003) Crystal structures and molecular mechanism of a light-induced signaling switch: the Phot-LOV1 domain from Chlamydomonas reinhardtii. Biophys J 84:2474–2482

    Article  PubMed  CAS  Google Scholar 

  • Folta KM, Lieg EJ et al (2003) Primary inhibition of hypocotyl growth and phototropism depend differently on phototropin-mediated increases in cytoplasmic calcium induced by blue light. Plant Physiol 133:1464–1470

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Wisniewska J, et al. (2002) Lateral relocalization of auxin efflux regular PIN3 mediates tropism in Arabidopsis. Nature 445:806–809

    Google Scholar 

  • Furukawa M, He YJ et al (2003) Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat Cell Biol 5:1001–1007

    Article  PubMed  CAS  Google Scholar 

  • Galen C, Huddle J et al (2004) An experimental test of the adaptive evolution of phototropins: blue-light photoreceptors controlling phototropism in Arabidopsis thaliana. Evolution 58:515–523

    PubMed  CAS  Google Scholar 

  • Gallagher S, Short TW et al (1988) Light-mediated changes in two proteins found associated with plasma membrane fractions from pea stem sections. Proc Natl Acad Sci U S A 85:8003–8007

    Article  PubMed  CAS  Google Scholar 

  • Galweiler L, Guan C et al (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230

    Article  PubMed  CAS  Google Scholar 

  • Geldner N, Hyman D et al (2007) Endosomal signaling of plant steroid receptor kinase BRI1. Genes Dev 21:1598–1602

    Article  PubMed  CAS  Google Scholar 

  • Geyer R, Wee S et al (2003) BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Mol Cell 12:783–790

    Article  PubMed  CAS  Google Scholar 

  • Gray WM, Kepinski S et al (2001) Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature 414:271–276

    Article  PubMed  CAS  Google Scholar 

  • Guilfoyle T (1998) Aux/IAAproteins and auxin signal transduction. Trends Plant Sci 3:205–207

    Article  Google Scholar 

  • Guo H, Kottke T et al (2005) The phot LOV2 domain and its interaction with LOV1. Biophys J 89:402–412

    Article  PubMed  CAS  Google Scholar 

  • Haga K, Takano M et al (2005) The Rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Plant Cell 17:103–115

    Article  PubMed  CAS  Google Scholar 

  • Hagen G, Kleinschmidt A, Guilfoyle T (1984) Auxin-regulated gene expression in intact soybean hypocotyl and excised hypoxotyl sections. Planta 162:147–153

    Article  CAS  Google Scholar 

  • Hanks SK, Hunter T (1995) Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9:576–596

    PubMed  CAS  Google Scholar 

  • Harada A, Sakai T et al (2003) Phot1 and phot2 mediate blue light-induced transient increases in cytosolic Ca2+ differently in Arabidopsis leaves. Proc Natl Acad Sci U S A 100:8583–8588

    Article  PubMed  CAS  Google Scholar 

  • Harper RM, Stowe-Evans EL et al (2000) The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell 12:757–770

    Article  PubMed  CAS  Google Scholar 

  • Harper SM, Neil LC et al (2003) Structural basis of a phototropin light switch. Science 301:1541–1544

    Article  PubMed  CAS  Google Scholar 

  • Harper SM, Neil LC et al (2004) Conformational changes in a photosensory LOV domain monitored by time-resolved NMR spectroscopy. J Am Chem Soc 126:3390–3391

    Article  PubMed  CAS  Google Scholar 

  • Iino M (1990) Phototropism: mechanisms and ecological implications. Plant Cell Environ 13:633–650

    Article  Google Scholar 

  • Iino M, Briggs WR, Shafer E (1984) Phytochrome-mediated phototropism in maize seedling shoots. Planta 160:41–51

    Article  CAS  Google Scholar 

  • Inada S, Ohgishi M et al (2004) RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. Plant Cell 16:887–896

    Article  PubMed  CAS  Google Scholar 

  • Inoue S, Kinoshita T et al (2008a) Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proc Natl Acad Sci U.S.A 105:5626–5631

    Google Scholar 

  • Inoue S, Kinoshita T et al (2008b) Leaf positioning of Arabidopsis in response to blue light. Mol Plant 1:15–26

    Article  CAS  Google Scholar 

  • Iwata T, Nozaki D et al (2003) Light-induced structural changes in the LOV2 domain of Adiantum phytochrome3 studied by low-temperature FTIR and UV-visible spectroscopy. Biochemistry 42:8183–8191

    Article  PubMed  CAS  Google Scholar 

  • Iwata T, Tokutomi S et al (2002) Photoreaction of the cysteine S-H group in the LOV2 domain of Adiantum phytochrome3. J Am Chem Soc 124:11840–11841

    Article  PubMed  CAS  Google Scholar 

  • Janoudi A, Poff KL (1990) A common fluence threshold for first positive and second positive phototropism in Arabidopsis thaliana. Plant Physiol 94:1605–1608

    Article  PubMed  CAS  Google Scholar 

  • Janoudi AK, Gordon WR et al (1997) Multiple phytochromes are involved in red-light-induced enhancement of first-positive phototropism in Arabidopsis thaliana. Plant Physiol 113:975–979

    Article  PubMed  CAS  Google Scholar 

  • Jarillo JA, Ahmad M, Cashmore AR (1998) NPL1 (accession no. AF053941): a second member of the NPH serine/threonine kinase family of Arabidopsis (PGR98–100). Plant Physiol 117:719

    Google Scholar 

  • Jarillo JA, Gabrys H et al (2001) Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410:952–954

    Article  PubMed  CAS  Google Scholar 

  • Jones MA, Feeney KA et al (2007) Mutational analysis of phototropin 1 provides insights into the mechanism underlying LOV2 signal transmission. J Biol Chem 282:6405–6414

    Article  PubMed  CAS  Google Scholar 

  • Kagawa T, Sakai T et al (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291:2138–2141

    Article  PubMed  CAS  Google Scholar 

  • Kang B, Grancher N et al (2008) Multiple interactions between cryptochrome and phototropin blue-light signalling pathways in Arabidopsis thaliana. Planta 227:1091–1099

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M, Swartz TE et al (2002) Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii. Plant Physiol 129:762–773

    Article  PubMed  CAS  Google Scholar 

  • Kepinski S, Leyser O (2002) Ubiquitination and auxin signaling: a degrading story. Plant Cell 14(Suppl): S81–S95

    PubMed  CAS  Google Scholar 

  • Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

    Article  PubMed  CAS  Google Scholar 

  • Khurana JP, Poff KL (1989) Mutants of Arabidopsis thaliana with altered phototropism. Planta 178:400–406

    Article  PubMed  CAS  Google Scholar 

  • Khurana JP, Ren Z et al. (1989) Mutants of Arabidopsis thaliana with decreased amplitude in their phototropic esponse. Plant Physiol 91:685–689

    Article  PubMed  CAS  Google Scholar 

  • King SM (2000) The dynein microtubule motor. Biochim Biophys Acta 1496:60–75

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Doi M et al (2001) Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414:656–660

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Emi T et al (2003) Blue-light- and phosphorylation-dependent binding of a 14-3-3 protein to phototropins in stomatal guard cells of broad bean. Plant Physiol 133:1453–1463

    Article  PubMed  CAS  Google Scholar 

  • Kiss JZ, Ruppel NJ et al (2001) Phototropism in Arabidopsis roots is mediated by two sensory systems. Adv Space Res 27:877–885

    Article  PubMed  CAS  Google Scholar 

  • Knieb E, Salomon M et al (2004) Tissue-specific and subcellular localization of phototropin determined by immuno-blotting. Planta 218:843–851

    Article  PubMed  CAS  Google Scholar 

  • Knieb E, Salomon M et al (2005) Autophosphorylation, electrophoretic mobility and immunoreaction of oat phototropin 1 under UV and blue Light. Photochem Photobiol 81:177–182

    Article  PubMed  CAS  Google Scholar 

  • Kong SG, Suzuki T et al (2006) Blue light-induced association of phototropin 2 with the Golgi apparatus. Plant J 45:994–1005

    Article  PubMed  CAS  Google Scholar 

  • Kong SG, Kinoshita T et al (2007) The C-terminal kinase fragment of Arabidopsis phototropin 2 triggers constitutive phototropin responses. Plant J 51:862–873

    Article  PubMed  CAS  Google Scholar 

  • Konjevic R, Steinitz B et al (1989) Dependence of the phototropic response of Arabidopsis thaliana on fluence rate and wavelength. Proc Nat Acad Sci U S A 86:9876–9880

    Article  Google Scholar 

  • Krek W (2003) BTB proteins as henchmen of Cul3-based ubiquitin ligases. Nat Cell Biol 5:950–951

    Article  PubMed  CAS  Google Scholar 

  • Lariguet P, Schepens I et al (2006) PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism. Proc Natl Acad Sci U S A 103:10134–10139

    Article  PubMed  CAS  Google Scholar 

  • Lascève G, Leymarie J et al (1999) Arabidopsis contains at least four independent blue-light-activated signal transduction pathways. Plant Physiol 120:605–614

    Article  PubMed  Google Scholar 

  • Lawrence CJ, Morris NR et al (2001) Dyneins have run their course in plant lineage. Traffic 2:362–363

    Article  PubMed  CAS  Google Scholar 

  • Liscum E, Briggs WR (1995) Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 7:473–785

    Article  PubMed  CAS  Google Scholar 

  • Liscum E, Briggs W (1996) Mutations of Arabidopsis in potential transduction and response components of the phototropic signaling pathway. Plant Physiol 112:291–296

    Article  PubMed  CAS  Google Scholar 

  • Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49:387–400

    Article  PubMed  CAS  Google Scholar 

  • Luesse DR, DeBlasio SL et al (2006) Plastid movement impaired 2, a new gene involved in normal blue-light-induced chloroplast movements in Arabidopsis. Plant Physiol 141:1328–1337

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka D, Tokutomi S (2005) Blue light-regulated molecular switch of Ser/Thr kinase in phototropin. Proc Natl Acad Sci U S A 102:13337–13342

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka D, Iwata T et al (2007) Primary processes during the light-signal transduction of phototropin. Photochem Photobiol 83:122–130

    PubMed  CAS  Google Scholar 

  • McClure B, Guilfoyle TJ (1987) Characterization of a class of small auxin-inducible soybean polyadenylated RNAs. Plant Mol Biol 9:611–623

    Article  CAS  Google Scholar 

  • McQueen-Mason S, Durachko DM et al (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433

    Article  PubMed  CAS  Google Scholar 

  • Motchoulski A, Liscum E (1999) Arabidopsis NPH3: a NPH1 photoreceptor-interacting protein essential for phototropism. Science 286:961–964

    Article  PubMed  CAS  Google Scholar 

  • Nakamoto D, Ikeura A et al (2006) Inhibition of brassinosteroid biosynthesis by either a dwarf4 mutation or a brassinosteroid biosynthesis inhibitor rescues defects in tropic responses of hypocotyls in the Arabidopsis mutant nonphototropic hypocotyl 4. Plant Physiol 141:456–464

    Article  PubMed  CAS  Google Scholar 

  • Nakasako M, Iwata T et al (2004) Light-induced structural changes of LOV domain-containing polypeptides from Arabidopsis phototropin 1 and 2 studied by small-angle X-ray scattering. Biochemistry 43:14881–14890

    Article  PubMed  CAS  Google Scholar 

  • Nakasako M, Zikihara K et al (2008) Structural basis of LOV1-dimerization of Arabidopsis phototropins 1 and 2. J Mol Biol 381:718–733

    Google Scholar 

  • Nakasone Y, Eitoku T et al (2006) Kinetic measurement of transient dimerization and dissociation reactions of Arabidopsis phototropin 1 LOV2 domain. Biophys J 91:645–653

    Article  PubMed  CAS  Google Scholar 

  • Nakasone Y, Eitoku T et al (2007) Dynamics of conformational changes of Arabidopsis phototropin 1 LOV2 with the linker domain. J Mol Biol 367:432–442

    Article  PubMed  CAS  Google Scholar 

  • Neiß C, Saalfrank P (2003) Ab Initio quantum chemical investigation of the first steps of the photocycle of phototropin: a model study. Photochem Photobiol 77:101–109

    Article  PubMed  Google Scholar 

  • Noh B, Bandyopadhyay A et al (2003) Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature 423:999–1002

    Article  PubMed  CAS  Google Scholar 

  • Noh B, Murphy AS et al (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13:2441–2454

    Article  PubMed  CAS  Google Scholar 

  • Nozaki D, Iwata T et al (2004) Role of Gln1029 in the photoactivation processes of the LOV2 domain in adiantum phytochrome3. Biochemistry 43:8373–8379

    Article  PubMed  CAS  Google Scholar 

  • Oikawa K, Kasahara M et al (2003) Chloroplast unusual positioning1 is essential for proper chloroplast positioning. Plant Cell 15:2805–2815

    Article  PubMed  CAS  Google Scholar 

  • Okada K, Shimura Y (1992) Mutational analysis of root gravitropism and phototropism of Arabidopsis thaliana seedlings. Aust J Plant Physiol 19:439–448

    Article  Google Scholar 

  • Onodera A, Kong SG et al (2005) Phototropin from Chlamydomonas reinhardtii is functional in Arabidopsis thaliana. Plant Cell Physiol 46:367–374

    Article  PubMed  CAS  Google Scholar 

  • Paal A (1917–1919) Ueber phototropische Reizung. Jahrb Wiss Bot 58:406–473

    Google Scholar 

  • Palmer JM, Short TW et al (1993a) Correlation of blue light-induced phosphorylation to phototropism in Zea mays L. Plant Physiol 102:1219–1225

    CAS  Google Scholar 

  • Palmer JM, Short TW et al (1993b) Blue light-induced phosphorylation of a plasma membrane-associated protein in Zea mays L. Plant Physiol 102:1211–1218

    CAS  Google Scholar 

  • Parker K, Baskin TI et al (1989) Evidence for a phytochrome-mediated phototropism in etiolated pea seedlings. Plant Physiol 89:493–497

    Article  PubMed  Google Scholar 

  • Parks BM, Quail PH et al (1996) Phytochrome A regulates red-light induction of phototropic enhancement in Arabidopsis. Plant Physiol 110:155–162

    Article  PubMed  CAS  Google Scholar 

  • Pawson T, Scott JD (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science 278:2075–2080

    Article  PubMed  CAS  Google Scholar 

  • Pedmale UV, Liscum E (2007) Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting protein NPH3. J Biol Chem 282:19992–20001

    Article  PubMed  CAS  Google Scholar 

  • Perez-Torrado R, Yamada D et al (2006) Born to bind: the BTB protein-protein interaction domain. Bioessays 28:1194–1202

    Article  PubMed  CAS  Google Scholar 

  • Pintard L, Willis JH et al (2003) The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature 425:311–316

    Article  PubMed  CAS  Google Scholar 

  • Pintard L, Willems A et al (2004) Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. EMBO J 23:1681–1687

    Article  PubMed  CAS  Google Scholar 

  • Raikhel N, Hicks G (2007) Signaling from plant endosomes: compartments with something to say! Genes Dev 21:1578–1580

    Article  PubMed  CAS  Google Scholar 

  • Rayle DL, Cleland R (1970) Enhancement of wall loosening and elongation by acid solutions. Plant Physiol 46:250–253

    Article  PubMed  CAS  Google Scholar 

  • Rayle DL, Cleland RE (1992) The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol 99:1271–1274.

    Article  PubMed  CAS  Google Scholar 

  • Rayle DL, Purves WK (1967) Conversion of indole-3-ethanol to indole-3-acetic acid in cucumber seedling shoots. Plant Physiol 42:1091–1093

    Article  PubMed  CAS  Google Scholar 

  • Reed JW (2001) Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci 6:420–425

    Article  PubMed  CAS  Google Scholar 

  • Reymond P, Short TW et al (1992a) Blue light activates a specific protein kinase in higher plants. Plant Physiol 100:655–661

    Article  CAS  Google Scholar 

  • Reymond P, Short TW et al (1992b) Light-induced phosphorylation of a membrane protein plays an early role in signal transduction for phototropism in Arabidopsis thaliana. Proc Natl Acad Sci U S A 89:4718–4721

    Article  CAS  Google Scholar 

  • Ruegger M, Dewey E et al (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes Dev 12:198–207

    Article  PubMed  CAS  Google Scholar 

  • Ruppel NJ, Hangarter RP et al (2001) Red-light-induced positive phototropism in Arabidopsis roots. Planta 212:424–430

    Article  PubMed  CAS  Google Scholar 

  • Sachs J (1887) Lectures on the Physiology of Plants Oxford, Clarenda Press.

    Google Scholar 

  • Sakai T, Kagawa T et al (2001) Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci U S A 98:6969–6974

    Article  PubMed  CAS  Google Scholar 

  • Sakai T, Wada T et al (2000) RPT2. A signal transducer of the phototropic response in Arabidopsis. Plant Cell 12:225–236

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto K, Briggs WR (2002) Cellular and subcellular localization of phototropin 1. Plant Cell 14:1723–1735

    Article  PubMed  CAS  Google Scholar 

  • Salomon M (2004) Dimerization of the plant photoreceptor phototropin is probably mediated by the LOV1 domain. FEBS Lett 572:8–10

    Article  PubMed  CAS  Google Scholar 

  • Salomon M, Christie JM et al (2000) Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry 39:9401–9410

    Article  PubMed  CAS  Google Scholar 

  • Salomon M, Knieb E et al (2003) Mapping of low- and high-fluence autophosphorylation sites in phototropin 1. Biochemistry 42:4217–4225

    Article  PubMed  CAS  Google Scholar 

  • Salomon M, Lempert U et al (2004) Dimerization of the plant photoreceptor phototropin is probably mediated by the LOV1 domain. FEBS Lett 572:8–10

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Iwata T et al (2005) Reactive cysteine is protonated in the triplet excited state of the LOV2 domain in Adiantum phytochrome3. J Am Chem Soc 127:1088–1089

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Allen GJ et al (2001) Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol 52:627–658

    Article  PubMed  CAS  Google Scholar 

  • Short TW, Reymond P, Briggs WR (1993) A pea plasma membrane protein exhibiting blue light-induced phosphorylation retains photosensitivity following triton solubilization. Plant Physiol 101:647–655.

    PubMed  CAS  Google Scholar 

  • Sorkin A, Von Zastrow M (2002) Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol 3:600–614

    Article  PubMed  CAS  Google Scholar 

  • Stoelzle S, Kagawa T et al (2003) Blue light activates calcium-permeable channels in Arabidopsis mesophyll cells via the phototropin signaling pathway. Proc Natl Acad Sci U S A 100:1456–1461

    Article  PubMed  CAS  Google Scholar 

  • Stowe-Evans EL, Harper RM et al (1998) NPH4, a conditional modulator of auxin-dependent differential growth responses in Arabidopsis. Plant Physiol 118:1265–1275

    Article  PubMed  CAS  Google Scholar 

  • Stowe-Evans EL, Luesse DR et al (2001) The enhancement of phototropin-induced phototropic curvature in Arabidopsis occurs via a photoreversible phytochrome A-dependent modulation of auxin responsiveness. Plant Physiol 126:826–834

    Article  PubMed  CAS  Google Scholar 

  • Suetsugu N, Kagawa T et al (2005) An auxilin-like J-domain protein, JAC1, regulates phototropin-mediated chloroplast movement in Arabidopsis. Plant Physiol 139:151–162

    Article  PubMed  CAS  Google Scholar 

  • Swartz TE, Corchnoy SB et al (2001) The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J Biol Chem 276:36493–36500

    Article  PubMed  CAS  Google Scholar 

  • Swartz TE, Wenzel PJ et al (2002) Vibration spectroscopy reveals light-induced chromophore and protein structural changes in the LOV2 domain of the plant blue-light receptor phototropin. Biochemistry 41:7183–7189

    Article  PubMed  CAS  Google Scholar 

  • Tan X, Calderon-Villalobos LI et al (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645

    Article  PubMed  CAS  Google Scholar 

  • Tatematsu K, Kumagai S et al (2004) MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell 16:379–393

    Article  PubMed  CAS  Google Scholar 

  • Thimann KV, Curry GM (1960) Phototropism and phototaxis. In: Comparative biochemistry, vol., Florkin M and Musan H, eds (Newyork: Academic Press), pp 243–306

    Google Scholar 

  • Sullivan S, Thomson CE et al (2008) In vivo phosphorylation site mapping and functional characterization of Arabidopsis phototropin 1. Mol Plant 1:178–194

    Article  PubMed  CAS  Google Scholar 

  • Tokutomi S, Matsuoka D et al (2008) Molecular structure and regulation of phototropin kinase by blue light. Biochim Biophys Acta 1784:133–142

    PubMed  CAS  Google Scholar 

  • Tsuchidamayama T, Nakano M et al (2008) Mapping of the phosphorylation sites on the phototropic signal transducer, NPH3. Plant Sci 174:626–633

    Article  CAS  Google Scholar 

  • Tsunoda S, Sierralta J et al (1998) Specificity in signaling pathways: assembly into multimolecular signaling complexes. Curr Opin Genet Dev 8:419–422

    Article  PubMed  CAS  Google Scholar 

  • Ueno K, Kinoshita T et al (2005) Biochemical characterization of plasma membrane H + -ATPase activation in guard cell protoplasts of Arabidopsis thaliana in response to blue light. Plant Cell Physiol 46:955–963

    Article  PubMed  CAS  Google Scholar 

  • van den Heuvel S (2004) Protein degradation: CUL-3 and BTB--partners in proteolysis. Curr Biol 14:R59-R61

    PubMed  CAS  Google Scholar 

  • von Wiesner J (1878) Die Helio Erscheinungen im Pflanzenreiche: eine Physiologische Monographie. Kaiserlich-koniglichen Hof- und Staatsdruckerei, Vienna

    Google Scholar 

  • Wada M, Kagawa T, Sato Y (2003) Chloroplast movement. Ann Rev Plant Biol l54:455–468

    Article  CAS  Google Scholar 

  • Wan YL, Eisinger W et al (2007) The subcellular localization and blue light-induced movement of phototropin 1-GFP in etiolated seedlings of Arabidopsis thaliana. Mol Plant 1:103–117

    Article  PubMed  CAS  Google Scholar 

  • Wang KL, Yoshida H et al (2004) Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428:945–950

    Article  PubMed  CAS  Google Scholar 

  • Watahiki MK, Yamamoto KT (1997) The massugu1 mutation of Arabidopsis identified with failure of auxin-induced growth curvature of hypocotyl confers auxin insensitivity to hypocotyl and leaf. Plant Physiol 115:419–426

    Article  PubMed  CAS  Google Scholar 

  • Wen W, Meinkoth JL et al (1995) Identification of a signal for rapid export of proteins from the nucleus. Cell 82:463–473

    Article  PubMed  CAS  Google Scholar 

  • Went F (1926) On growth accelerating substances in the coleoptile of Avena sativa. Proc K Ned Akad Wet 30:10–19

    Google Scholar 

  • Went F (1928) Wuchsstoff und Wachstum. Recl Trav Bot Neerl 25:1–116

    Google Scholar 

  • Whippo CW, Hangarter RP (2003) Second positive phototropism results from coordinated co-action of the phototropins and cryptochromes. Plant Physiol 132:1499–14507

    Article  PubMed  CAS  Google Scholar 

  • Whippo CW, Hangarter RP (2004) Phytochrome modulation of blue-light-induced phototropism. Plant Cell Environ 27:1223–1228

    Article  CAS  Google Scholar 

  • Whippo CW, Hangarter RP (2005) A brassinosteroid-hypersensitive mutant of BAK1 indicates that a convergence of photomorphogenic and hormonal signaling modulates phototropism. Plant Physiol 139:448–457

    Article  PubMed  CAS  Google Scholar 

  • Whippo CW, Hangarter RP (2006) Phototropism: bending towards enlightenment. Plant Cell 18:1110–1119

    Article  PubMed  CAS  Google Scholar 

  • Wilkins A, Ping Q et al (2004) RhoBTB2 is a substrate of the mammalian Cul3 ubiquitin ligase complex. Genes Dev 18:856–861

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Wei Y et al (2003) BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 425:316–321

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto A, Iwata T et al (2008) Role of Phe1010 in light-induced structural changes of the neo1-LOV2 domain of Adiantum. Biochemistry 47:922–928

    Article  PubMed  CAS  Google Scholar 

  • Zeiger E (1983) The biology of stomatal guard cells. Annu Rev Plant Physiol 34:441–474

    Article  CAS  Google Scholar 

  • Zimmerman BK, Briggs W (1963a) Phototropic dosage-response curves for oat coleoptiles. Plant Physiol 38:253–262

    Article  CAS  Google Scholar 

  • Zimmerman BK, Briggs WR (1963b) A kinetic model for phototropic responses of oat coleoptiles. Plant Physiol 38:253–261

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Liscum[*] .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Celaya, R., Pedmale, U., Liscum[*], E. (2009). Signaling in Phototropism. In: Mancuso, S., Balu¿ka, F. (eds) Signaling in Plants. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89228-1_12

Download citation

Publish with us

Policies and ethics