Skip to main content

Behavior Learning Based on a Policy Gradient Method: Separation of Environmental Dynamics and State Values in Policies

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5351))

Abstract

Policy gradient methods are very useful approaches in reinforcement learning. In our policy gradient approach to behavior learning of agents, we define an agent’s decision problem at each time step as a problem of minimizing an objective function. In this paper, we give an objective function that consists of two types of parameters representing environmental dynamics and state-value functions. We derive separate learning rules for the two types of parameters so that the two sets of parameters can be learned independently. Separating these two types of parameters will make it possible to reuse state-value functions for agents in other different environmental dynamics, even if the dynamics is stochastic. Our simulation experiments on learning hunter-agent policies in pursuit problems show the effectiveness of our method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sutton, R.S., Barto, A.G.: Reinforcement Learning. MIT Press, Cambridge (1998)

    Google Scholar 

  2. Williams, R.J.: Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning. Machine Learning 8, 229–256 (1992)

    MATH  Google Scholar 

  3. Kimura, H., Yamamura, M., Kobayashi, S.: Reinforcement Learning by Stochastic Hill Climbing on Discounted Reward. In: Proceedings of the 12th International Conference on Machine Learning, pp. 295–303 (1995)

    Google Scholar 

  4. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy Gradient Methods for Reinforcement Learning with Function Approximation. In: Advances in Neural Information Processing Systems (Proc. NIPS 1999 Conf.), vol. 12, pp. 1057–1063 (2000)

    Google Scholar 

  5. Konda, V.R., Tsitsiklis, J.N.: Actor-Critic Algorithms. In: Advances in Neural Information Processing Systems (Proc. NIPS 1999 Conf.), vol. 12, pp. 1008–1014 (2000)

    Google Scholar 

  6. Baird, L., Moore, A.: Gradient Descent for General Reinforcement Learning. In: Advances in Neural Information Processing Systems (Proc. NIPS 1998 Conf.), vol. 11, pp. 968–974 (1999)

    Google Scholar 

  7. Igarashi, H., Ishihara, S., Kimura, M.: Reinforcement Learning in Non-Markov Decision Processes —Statistical Properties of Characteristic Eligibility. IEICE Transactions on Information and Systems J90-D(9), 2271–2280 (2007) (in Japanese)

    Google Scholar 

  8. Ishihara, S., Igarashi, H.: Applying the Policy Gradient Method to Behavior Learning in Multi-agent Systems: The Pursuit Problem. Systems and Computers in Japan 37(10), 101–109 (2006)

    Article  Google Scholar 

  9. Peshkin, L., Kim, K.E., Meuleau, N., Kaelbling, L.P.: Learning to cooperative via policy search. In: Proc. of 16th Conference on Uncertainty in Artificial Intelligence (UAI 2000), pp. 489–496 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ishihara, S., Igarashi, H. (2008). Behavior Learning Based on a Policy Gradient Method: Separation of Environmental Dynamics and State Values in Policies. In: Ho, TB., Zhou, ZH. (eds) PRICAI 2008: Trends in Artificial Intelligence. PRICAI 2008. Lecture Notes in Computer Science(), vol 5351. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89197-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89197-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89196-3

  • Online ISBN: 978-3-540-89197-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics