Advertisement

A Malware Detector Placement Game for Intrusion Detection

  • Stephan Schmidt
  • Tansu Alpcan
  • Şahin Albayrak
  • Tamer Başar
  • Achim Mueller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5141)

Abstract

We propose and investigate a game-theoretic approach to the malware filtering and detector placement problem which arises in network security. Our main objective is to develop optimal detector algorithms taking into account attacker strategies and actions. Assuming rational and intelligent attackers, we present a two-person zero-sum non-cooperative Markov security game framework as a basis for modeling the interaction between the attackers who generate malware traffic on a network and a corresponding intrusion detection system (IDS). Thus, we establish a formal model of the detector placement problem based on game theory and derive optimal strategies for both players. In addition, we test the strategies obtained in a realistic agent-based network simulation environment and compare the results of static and dynamic placement scenarios. The obtained IDS strategies and the corresponding simulation results provide interesting insights into how to optimally deploy malware detectors in a network environment.

Keywords

network-based intrusion detection monitor placement game theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horton, J.D., Lopez-Ortiz, A.: On the number of distributed measurement points for network tomography. In: IMC 2003: Proc. of the 3rd ACM SIGCOMM conf. on Internet measurement, pp. 204–209. ACM Press, New York (2003)CrossRefGoogle Scholar
  2. 2.
    Jamin, S., Cheng, J., Yixin, J., Raz, D., Shavitt, Y., Lhixia, Z.: On the placement of internet instrumentation. In: Proc. INFOCOM 2000, vol. 1, pp. 295–304 (2000)Google Scholar
  3. 3.
    Estan, C., Keys, K., Moore, D., Varghese, G.: Building a better netflow. In: Proc. SIGCOMM 2004, pp. 245–256. ACM Press, New York (2004)CrossRefGoogle Scholar
  4. 4.
    Fricke, S., Bsufka, K., Keiser, J., Schmidt, T., Sesseler, R., Albayrak, S.: Agent-based telematic services and telecom applications. Communications of the ACM 44(4), 43–48 (2001)CrossRefGoogle Scholar
  5. 5.
    Cantieni, G.R., Iannaccone, G., Barakat, C., Diot, C., Thiran, P.: Reformulating the monitor placement problem: Optimal network-wide sampling. Technical report, Intel Research (2005)Google Scholar
  6. 6.
    Brandes, U.: A faster algorithm for betweenness centrality. Journal of Mathematical Sociology 25(2), 163–177 (2001)zbMATHGoogle Scholar
  7. 7.
    Bloem, M., Alpcan, T., Schmidt, S., Başar, T.: Malware filtering for network security using weighted optimality measures. In: Proc. of 2007 IEEE Multi-conference on Systems and Control. IEEE, Los Alamitos (2007)Google Scholar
  8. 8.
    Kodialam, M., Lakshman, T.: Detecting network intrusions via sampling: A game theoretic approach. In: Proceedings IEEE INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1880–1889 (2003)Google Scholar
  9. 9.
    Başar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory, 2nd edn. SIAM, Philadelphia (1999)zbMATHGoogle Scholar
  10. 10.
    Alpcan, T., Başar, T.: An intrusion detection game with limited observations. In: Proceedings of 12th International Symposium on Dynamic Games and Applications, Sophia-Antipolis, France (2006)Google Scholar
  11. 11.
    Bertsekas, D.: Dynamic Programming and Optimal Control, 2nd edn., vol. 2. Athena Scientific, Belmont (2001)zbMATHGoogle Scholar
  12. 12.
    Littman, M.L.: Markov games as a framework for multi-agent reinforcement learning. In: Proc. of the Eleventh International Conference on Machine Learning, San Francisco, CA, 157–163 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Stephan Schmidt
    • 1
  • Tansu Alpcan
    • 2
  • Şahin Albayrak
    • 1
  • Tamer Başar
    • 3
  • Achim Mueller
    • 2
  1. 1.DAI-LaborTU BerlinGermany
  2. 2.Deutsche Telekom LaboratoriesTU BerlinGermany
  3. 3.Coordinated Science LaboratoryU. of IllinoisUrbana

Personalised recommendations