Application of Kohonen Maps to Improve Security Tests on Automation Devices

  • João Paulo S. Medeiros
  • Allison C. Cunha
  • Agostinho M. BritoJr.
  • Paulo S. Motta Pires
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5141)


We propose a new method to improve the effectiveness of security tests on industrial automation devices. Using a self-organizing neural network, we are able to build a Kohonen map that organizes operating systems according to similarities of their TCP/IP fingerprints. Our technique enables us to associate specific security tests to regions of the Kohonen map and to use this information to improve protection of automation devices.


Input Space Automation Device Security Test Winner Neuron Automation Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dzung, D., Naedele, M., Hoff, T.P.V., Crevatin, M.: Security for Industrial Communication Systems. Proceedings of the IEEE 93(6) (2005)Google Scholar
  2. 2.
    Pires, P.S.M., Oliveira, L.A.G.: Security Aspects of SCADA and Corporate Network Interconnection: An Overview. In: Proceedings of International Conference on Dependability of Computer Systems, DepCoS RELCOMEX, Szklarska Poreba, Poland, pp. 127–134 (2006)Google Scholar
  3. 3.
    Creery, A., Byres, E.J.: Industrial Cybersecurity for Power System and SCADA Networks. In: Industry Applications Society 52nd Annual Petroleum and Chemical Industry Conference, pp. 303–309 (2005)Google Scholar
  4. 4.
    Kohonen, T.: Self-Organization and Associative Memory, 3rd edn. Springer, New York (1989)Google Scholar
  5. 5.
    Fyodor: Network Mapper (2008),
  6. 6.
    Fyodor: Remote OS detection via TCP/IP Stack Fingerprinting. Phrack Magazine 8(54) (1998)Google Scholar
  7. 7.
    Fyodor: Remote OS Detection via TCP/IP Fingerprinting (2nd Generation) (2006),
  8. 8.
    Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall, New Jersey (1999)zbMATHGoogle Scholar
  9. 9.
    Oja, M., Kaski, S., Kohonen, T.: Bibliography of Self-Organizing Map (SOM) Papers: 1998-2001 addendum. Neural Computing Surveys 3(1), 1–156 (2003)Google Scholar
  10. 10.
    Medeiros, J.P.S., Cunha, A.C., Brito Jr., A.M., Pires, P.S.M.: Automating Security Tests for Industrial Automation Devices Using Neural Networks. In: Proceedings of the 12th IEEE Conference on Emerging Technologies and Factory Automation, ETFA, Patras, Greece (2007)Google Scholar
  11. 11.
    Brito Jr., A.M., Neto, A.D.D., Melo, J.D.: Surface Reconstruction Using Neural Networks and Adaptive Geometry Meshes. In: Proceedings of the International Joint Conference on Neural Networks, Budapest, Hungary (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • João Paulo S. Medeiros
    • 1
  • Allison C. Cunha
    • 1
  • Agostinho M. BritoJr.
    • 1
  • Paulo S. Motta Pires
    • 1
  1. 1.LabSIN - Security Information Laboratory, Department of Computer Engineering and AutomationFederal University of Rio Grande do NorteNatalBrazil

Personalised recommendations