Intra Autonomous System Overlay Dedicated to Communication Resilience

  • Simon Delamare
  • Gwendal Le Grand
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5141)


Some services delivered in IP networks, like IP television, Telephony over IP and critical services, have strong robustness requirements. Consequently, the communications delivering those services must be resilient to failures in the network. This paper proposes a new approach to improve communication protection. It consists in deploying a routing overlay dedicated to resilience in an autonomous system, and it reduces connectivity restoration time after a failure (compared to standard routing protocols). Finally, we validate this proposal under different scenarios on an emulated testbed.


Resilient Networks Overlay Routing RON OSPF 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basu, A., Riecke, J.: Stability issues in ospf routing. SIGCOMM Comput. Commun. Rev. 31(4), 225–236 (2001)CrossRefGoogle Scholar
  2. 2.
    Malkin, G.: Rip version 2. Internet Engineering Task Force. RFC 2453 (1998)Google Scholar
  3. 3.
  4. 4.
  5. 5.
    Moy, J.: Ospf version 2. Internet Engineering Task Force. RFC 2328 (1998)Google Scholar
  6. 6.
    Oran, D.: Osi is-is intra-domain routing protocol. Internet Engineering Task Force. RFC 1142 (1990)Google Scholar
  7. 7.
    Apostolopoulos, G., et al.: Qos routing mechanisms and ospf extensions. Internet Engineering Task Force. RFC 2676 (1999)Google Scholar
  8. 8.
    Kompella, K., Rekhter, Y., Networks, J.: Ospf extensions in support of generalized multi-protocol label switching (gmpls). Internet Engineering Task Force. RFC 4203 (2005)Google Scholar
  9. 9.
    Goyal, M., Ramakrishnan, K., Feng, W.: Achieving faster failure detection in ospf networks. In: Proc. IEEE International Conference on Communications 2003, vol. 1, pp. 296–300 (2003)Google Scholar
  10. 10.
    Choudhury, G.: Prioritized treatment of specific ospf version 2 packets and congestion avoidance. Internet Engineering Task Force. RFC4222 (2005)Google Scholar
  11. 11.
    Gao, D., Zhou, Z., Zhang, H.: A novel algorithm for fast detection of network failure. Photonic Network Communications 9(1), 113–120 (2005)CrossRefGoogle Scholar
  12. 12.
    Molnr, M., Tezeghdanti, M.: Reroutage dans ospf avec des chemins de secours. Projet ARMOR, Rapport de recherche n. 4340 (2001)Google Scholar
  13. 13.
    Stamatelakis, D., Grover, W.: Ip layer restoration and network planning based on virtual protection cycles. IEEE Journal on Selected Areas in Communications (JSAC) 18(10) (2000)Google Scholar
  14. 14.
    Medard, M., Finn, S., Barry, R., Gallager, R.: Redundant trees for preplanned recovery in arbitrary vertex-redundant or edge-redundant graphs. IEEE/ACM Transactions on Networking 7(5), 641–652 (1999)CrossRefGoogle Scholar
  15. 15.
    Kvalbein, A., Hansen, A.F., Cicic, T., Gjessing, S., Lysne, O.: Fast recovery from link failures using resilient routing layers. In: Proceedings of 10th IEEE Symposium on Computers and Communications, 2005. ISCC 2005, vol. 27-30, pp. 554–560 (2005)Google Scholar
  16. 16.
    Narvaez, P., Siu, K., Tzeng, H.: New dynamic spt algorithm based on a ball-and-string model. In: INFOCOM, pp. 973–981 (1999)Google Scholar
  17. 17.
    Liu, Y., Reddy, A.: A fast rerouting scheme for ospf/isis networks,
  18. 18.
    Pasqualini, S., Iselt, A., Kirstadter, A., Frot, A.: Mpls protection switching vs. In: Solé-Pareta, J., Smirnov, M., Van Mieghem, P., Domingo-Pascual, J., Monteiro, E., Reichl, P., Stiller, B., Gibbens, R.J. (eds.) QofIS 2004. LNCS, vol. 3266. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Rosen, E., Rekhter, Y., Systems, C.: Bgp/mpls vpns. Internet Engineering Task Force. RFC 2547 (1999)Google Scholar
  20. 20.
    Cohen, B.: Incentives to build robustness in bittorrent (2003),
  21. 21.
    Castro, M., et al.: Splitstream: High-bandwidth multicast in cooperative environments. In: Proc. of the 19th ACM Symposium on Operating Systems Principles (SOSP 2003) (2003)Google Scholar
  22. 22.
    Savage, S., et al.: Detour: informed internet routing and transport. IEEE Micro. 19(1), 50–59 (1999)CrossRefGoogle Scholar
  23. 23.
    Andersen, D., Balakrishnan, H., Kaashoek, M.F., Morris, R.: Resilient overlay networks. In: Proc. 18th ACM SOSP, Banff, Canada (2001)Google Scholar
  24. 24.
    Rekhter, Y., Center, T.W.R., Corp, I., Li, T.: A border gateway protocol 4 (bgp-4). Internet Engineering Task Force. RFC 1771 (1995)Google Scholar
  25. 25.
    Paxson, V.: End-to-end routing behavior in the internet. In: Proc. ACM SIGCOMM, Cannes, France, September 1997, pp. 139–152 (1997)Google Scholar
  26. 26.
    Li, Z., Mohapaira, P.: The impact of topology on overlay routing service. In: INFOCOM 2004. Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies, March 7-11, vol. 1, p. 418 (2004)Google Scholar
  27. 27.
    Tang, C., McKinley, P.: On the cost-quality tradeoff in topology-aware overlay path probing. In: Proceedings of 11th IEEE International Conference on Network Protocols (2003)Google Scholar
  28. 28.
    Free: Internet service provider,
  29. 29.
    Bellard, F.: Qemu open source processor emulator,
  30. 30.
    MIT: Resilient overlay network source code,
  31. 31.
    Stanic, M.: Linux qos control tool,

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Simon Delamare
    • 1
  • Gwendal Le Grand
    • 1
  1. 1.TELECOM ParisTech (ENST) – LTCI–UMR 5141 CNRSParis CedexFrance

Personalised recommendations