Skip to main content

Mixed-Integer Optimization for Polygeneration Energy Systems Design

  • Chapter

Part of the book series: Energy Systems ((ENERGY))

Summary

In this chapter we introduce polygeneration energy systems in the context of future energy systems, and modeling and optimization issues involved in planning and configuration design of polygeneration processes. A mixed-integer nonlinear programming (MINLP) model is developed for the design optimization of polygeneration energy systems. A suitable superstructure is introduced, based on partitioning a general polygeneration energy system into four major blocks, for each of which alternative available technologies and types of equipment are considered. A detailed case study, involving a coal-based polygeneration plant producing electricity and methanol, is presented to demonstrate the key features and applicability of the proposed approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. S. Adjiman, I. P. Androulakis, and C. A. Floudas. Global optimization of MINLP problems in process synthesis and design. Computers and Chemical Engineering, 21:S445–S450, 1997.

    Google Scholar 

  2. C. S. Adjiman, I. P. Androulakis, and C. A. Floudas. Global optimization of mixed-integer nonlinear problems. AIChE Journal, 46(9):1769–1797, 2000.

    Article  Google Scholar 

  3. Q. Z. Al-Hamdan and M. S. Y. Ebaid. Modeling and simulation of a gas turbine engine for power generation. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 128(2):302–311, 2006.

    Article  Google Scholar 

  4. B. Chen, H. G. Jin, and L. Gao. Study of DME/power individual generation and polygeneration. Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 27(5):721–724, 2006.

    MATH  Google Scholar 

  5. D. Cocco, A. Pettinau, and G. Cau. Energy and economic assessment of IGCC power plants integrated with DME synthesis processes. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 220(2):95–102, 2006.

    Article  Google Scholar 

  6. GAMS Development Corporation. GAMS — A user's guide. GAMS, Washington DC, USA

    Google Scholar 

  7. C. A. Floudas, A. Aggarwal, and A. R. Ciric. Global optimum search for nonconvex NLP and MINLP problems. Computers and Chemical Engineering, 13(10):1117–1132, 1989.

    Article  Google Scholar 

  8. H. C. Frey and Y. H. Zhu. Improved system integration for integrated gasification combined cycle (IGCC) systems. Environmental Science and Technology, 40(5):1693–1699, 2006.

    Article  Google Scholar 

  9. Michael J. Gradassi and N. Wayne Green. Economics of natural gas conversion processes. Fuel Processing Technology Trends in Natural Gas Utilisation, 42(2–3):65–83, 1995.

    Article  Google Scholar 

  10. Andre Hugo, Paul Rutter, Stratos Pistikopoulos, Angelo Amorelli, and Giorgio Zoia. Hydrogen infrastructure strategic planning using multi-objective optimization. International Journal of Hydrogen Energy, 30(15):1523–1534, 2005.

    Article  Google Scholar 

  11. C. Kontoravdi, S. P. Asprey, E. N. Pistikopoulos, and A. Mantalaris. Application of global sensitivity analysis to determine goals for design of experiments: An example study on antibody-producing cell cultures. Biotechnology Progress, 21(4):1128–1135, 2005.

    Article  Google Scholar 

  12. Guang Jian Liu, Yu Liu, Zheng Li, Wei Dou Ni, and Heng Yong Xu. Design and analysis of a new dimethyl ether-electric power polygeneration system. Dongli Gongcheng/Power Engineering, 26(2):295–299, 2006.

    Google Scholar 

  13. P. Liu, D. I. Gerogiorgis, and E. N. Pistikopoulos. Modeling and optimization of polygeneration energy systems. Catalysis Today, 127(1–4):347–359, 2007.

    Article  Google Scholar 

  14. Pei Liu, Jian Gao, and Zheng Li. Performance alteration of methanol/electricity polygeneration systems for various modes of operation. Dongli Gongcheng/ Power Engineering, 26(4):587–591, 2006.

    MathSciNet  Google Scholar 

  15. Lin Wei Ma, Weidou Ni, Zheng Li, and Ting Jin Ren. Analysis of the polygen-eration system of methanol and electricity based on coal gasification (1). Power Engineering, 24(3):451–456, 2004.

    Google Scholar 

  16. Lin Wei Ma, Weidou Ni, Zheng Li, and Ting Jin Ren. Analysis of the polygen-eration system of methanol and electricity based on coal gasification (2). Power Engineering, 24(4):603–608, 2004.

    Google Scholar 

  17. J. M. Martinez-Frias, S. M. Aceves, J. R. Smith, and H. Brandt. Thermodynamic analysis of zero-atmospheric emissions power plant. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 126(1):2–8, 2004.

    Article  Google Scholar 

  18. National Energy Technology Laboratory. Commercial-scale demonstration of the liquid phase methanol (LPMEOH) process (a DOE assessment). Technical Report DOE/NETL-2004/1199, October 27 2003.

    Google Scholar 

  19. W. Ni, Z. Li, and X. Yuan. National energy futures analysis and energy security perspectives in china —strategic thinking on the energy issue in the tenth 5-year plan (FYP). In Workshop on East Asia Energy Futures, Beijing, 2000.

    Google Scholar 

  20. E. N. Pistikopoulos, M. C. Georgiadis, and V. Dua. Multi-parametric programming: theory, algorithms, and applications, vol. 1. Wiley, Weinheim, 2007.

    Book  Google Scholar 

  21. M. Rodriguez-Fernandez, S. Kucherenko, C. Pantelides, and N. Shah. Optimal experimental design based on global sensitivity analysis. Computer-Aided Chemical Engineering, 24, 2007.

    Google Scholar 

  22. N. V. Sahinidis and M. Tawarmalani. BARON 7.2.5: Global optimization of mixed-integer nonlinear programs, user's manual, 2005.

    Google Scholar 

  23. W. Shelton and J. Lyons. Texaco gasifier igcc base cases. Technical Report PED-IGCC-98-001, US Department of Energy, July 1998.

    Google Scholar 

  24. Ralph E. H. Sims, H. -H. Rogner, and K. Gregory. Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation. Energy Policy, 31(13):1315–1326, 2003.

    Article  Google Scholar 

  25. U.S. Department of Energy, International energy outlook 2006. Technical report, U.S. Department of Energy, 2006.

    Google Scholar 

  26. X. Zhang, L. Gao, H. Jin, and R. Cai. Design and analysis of coal based ammonia-power polygeneration. Dongli Gongcheng/Power Engineering, 26(2): 289–294, 2006.

    Google Scholar 

  27. Y. Zhang, W. Ni, and Z. Li. Research on superclean polygeneration energy system of iron and steel industry. In Proceedings of the Seventh IASTED International Conference on Power and Energy Systems, Nov 28-Dec 1 2004, Series on Energy and Power Systems, pages 152–157, Clearwater Beach, FL, United States, 2004. Acta Press, Anaheim, CA, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, P., Pistikopoulos, E.N. (2009). Mixed-Integer Optimization for Polygeneration Energy Systems Design. In: Kallrath, J., Pardalos, P.M., Rebennack, S., Scheidt, M. (eds) Optimization in the Energy Industry. Energy Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88965-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88965-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88964-9

  • Online ISBN: 978-3-540-88965-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics