Skip to main content

A Data Mapping Method for Steganography and Its Application to Images

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5284))

Abstract

In this paper, a new steganographic method that preserves the first-order statistics of the cover is proposed. Suitable for the passive warden scenario, the proposed method is not robust to any change of the stego object. Besides the relative simplicity of both encoding and decoding, high and adjustable information hiding rate can be achieved with our method. In addition, the perceptual distortion caused by data embedding can be easily minimized, such as in the mean squared error criterion. When applied to digital images, the generic method becomes a sort of LSB hiding, namely the LSB +  algorithm. To prevent the sample pair analysis attack, the LSB +  algorithm is implemented on the selected subsets of pixels to preserve some important high-order statistics as well. The experimental results of the implementation are promising.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R.J., Petitcolas, F.A.P.: On the limits of steganography. IEEE Journal on Selected Areas in Communications 16(4), 474–481 (1998)

    Article  Google Scholar 

  2. Simmons, G.J.: The prisoner’s problem and the subliminal channel. In: Advances in Cryptology: Proceedings of CRYPTO 1983, pp. 51–67. Plenum Press, New York (1984)

    Chapter  Google Scholar 

  3. Cachin, C.: An information theoretic model for steganography. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 306–318. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Johnson, N.F., Jajodia, S.: Steganalysis of images created using current steganography software. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 273–289. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Wang, Y., Moulin, P.: Steganalysis of block-structured stegotext. In: Proceedings of the SPIE Electronic Imaging, San Jose, CA, vol. 5306, pp. 477–488 (January 2004)

    Google Scholar 

  6. Sullivan, K., Madhow, U., Manjunath, B.S., Chandrasekaran, S.: Steganalysis for Markov Cover Data with Applications to Images. IEEE Transactions on Information Forensics and Security 1(2), 275–287 (2006)

    Article  Google Scholar 

  7. Westfeld, A., Pfitzmann, A.: Attacks on steganographic systems. In: Pfitzmann, A. (ed.) IH 1999. LNCS, vol. 1768, pp. 61–76. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Fridrich, J., Goljan, M., Hogea, D.: Steganalysis of JPEG images: Breaking the F5 algorithm. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 310–323. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Fridrich, J., Goljan, M., Hogea, D.: Attacking the OutGuess. In: Proceedings of the ACM Workshop on Multimedia and Security, Juan-Pins, France, December 2002, pp. 967–982 (2002)

    Google Scholar 

  10. Bohme, R., Westfeld, A.: Exploiting preserved statistics for steganalysis. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 82–96. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Dumitrescu, S., Wu, X., Wang, Z.: Detection of LSB steganography via sample pair analysis. IEEE Transactions on Signal Processingy 51(7), 1995–2007 (2003)

    Article  MATH  Google Scholar 

  12. Lyu, S., Farid, H.: Steganalysis using color wavelet statistics and one-class support vector machines. In: Proceedings of the SPIE Electronic Imaging, San Jose, CA, vol. 5306, pp. 35–45 (January 2004)

    Google Scholar 

  13. Ker, A.D.: Steganalysis of LSB matching in grayscale images. IEEE Signal Processing Letters 12(6), 441–444 (2005)

    Article  Google Scholar 

  14. Avcibas, I., Memon, N., Sankur, B.: Steganalysis using image quality metrics. IEEE Transactions on Image Processing 12(2), 221–229 (2003)

    Article  MathSciNet  Google Scholar 

  15. Lyu, S., Farid, H.: Steganalysis using high-order image statistics. IEEE Transactions on Information Forensics and Security 1(1), 111–119 (2006)

    Article  Google Scholar 

  16. Wang, Y., Moulin, P.: Optimized feature extraction for learning-based image steganalysis. IEEE Transactions on Information Forensics and Security 2(1), 31–45 (2007)

    Article  Google Scholar 

  17. Westfeld, A.: High capacity despite better steganalysis (F5 - a steganographic algorithm). In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 289–302. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Provos, N.: Defending against statistical steganalysis. In: Proceedings of the 10th USENIX Security Symposium, Washington, DC, pp. 323–335 (2001)

    Google Scholar 

  19. Franz, E.: Steganography preserving statistical properties. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 278–294. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Eggers, J.J., Bauml, R., Girod, B.: A communications approach to image steganography. In: Proceedings of the SPIE Electronic Imaging, San Jose, CA, vol. 4675, pp. 26–37 (2002)

    Google Scholar 

  21. Tzschoppe, R., Bauml, R., Huber, J.B., Kaup, A.: Steganographic system based on higher-order statistics. In: Proceedings of the SPIE Electronic Imaging, San Jose, CA, vol. 5020, pp. 156–166 (January 2003)

    Google Scholar 

  22. Solanki, K., Sullivan, K., Madhow, U., Manjunath, B.S., Chandrasekaran, S.: Provably secure steganography: Achieving zero K-L divergence using statistical restoration. In: IEEE International Conference on Image Processing 2006, Atlanta, USA, pp. 125–128 (Octobor 2006)

    Google Scholar 

  23. Sarkar, A., Solanki, K., Madhow, U., Chandrasekaran, S., Manjunath, B.S.: Secure steganography: Statistical restoration of the second order dependencies for improved security. In: Proceedings of the 32th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Honolulu, Hawaii (April 2007)

    Google Scholar 

  24. Sallee, P.: Model-based Steganography. In: Kalker, T., Cox, I., Ro, Y.M. (eds.) IWDW 2003. LNCS, vol. 2939, pp. 154–167. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  25. Bohme, R., Westfeld, A.: Breaking Cauchy Model-based JPEG Steganography with First Order Statistics. In: Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.) ESORICS 2004. LNCS, vol. 3193, pp. 125–140. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, Ht., Dugelay, JL., Cheung, Ym. (2008). A Data Mapping Method for Steganography and Its Application to Images. In: Solanki, K., Sullivan, K., Madhow, U. (eds) Information Hiding. IH 2008. Lecture Notes in Computer Science, vol 5284. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88961-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88961-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88960-1

  • Online ISBN: 978-3-540-88961-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics