Skip to main content

Endocannabinoids and the Non-Homeostatic Control of Appetite

  • Chapter
  • First Online:
Behavioral Neurobiology of the Endocannabinoid System

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 1))

Abstract

The usual physiological perspective on appetite and food intake regards control of eating simplistically, as merely the reflexive behavioural component of a strict homeostatic regulatory system. Hunger is seen to arise in response to energy deficit; meal size is determined by the passage of nutrients into the gut and the stimulation of multiple satiety signals; and overall energy intake is modified to reflect the balance of fuel reserves and energy expenditure. But everyday experience shows that we rarely eat simply through need. Rather, food stimuli exert a powerful influence over consumption through their appeal to innate and learned appetites, generating the psychological experiences of hunger, craving and delight independently of energy status. That these important and influential subjective experiences are mediated through complex neurochemical processes is self-evident; but the chemical nature of our infatuation with, and subservience to, the motivating properties of foods are overshadowed by mechanistic, peripherally anchored models that take little account of psychological factors, and which consequently struggle to explain the phenomenon of obesity. This chapter discusses recent developments that suggest the endocannabinoids are key components of the central mechanisms that give rise to the emotional and motivational experiences that lead us to eat and to overconsume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel EL (1971) Effects of marijuana on the solution of anagrams, memory and appetite. Nature 231:260–261

    PubMed  CAS  Google Scholar 

  • Acosta MC, Manubay J, Levin FR (2008) Pediatric obesity: parallels with addiction and treatment recommendations. Harv Rev Psychiatry. 16:80–96

    PubMed  Google Scholar 

  • Arnone M, Maruani J, Chaperon F et al. (1997) Selective inhibition of sucrose and ethanol intake by SR 141716, an antagonist of central cannabinoid (CB1) receptors. Psychopharmacology (Berlin) 132:104–106

    CAS  Google Scholar 

  • Avraham Y, Ben Menachem A, Okun A et al. (2005) Effects of the endocannabinoid noladin ether on body weight, food consumption, locomotor activity, and cognitive index in mice. Brain Res Bull 65:117–123

    PubMed  CAS  Google Scholar 

  • Beck B (2007) Hypothalamic neuropeptides and feeding regulation. In: Kirkham TC, Cooper SJ (eds) Appetite and body weight: integrative systems and the development of anti-obesity drugs. Academic Press, Burlington, MA

    Google Scholar 

  • Berridge KC (2000) Measuring hedonic impact in animals and infants: microstructure of affective taste reactivity patterns. Neurosci Biobehav Rev 24:173–198

    PubMed  CAS  Google Scholar 

  • Berridge KC (2007) Brain reward systems for food incentives hedonics in normal appetite and eating disorders. In: Kirkham TC, Cooper SJ (eds) Appetite and body weight: integrative systems and the development of anti-obesity drugs. Academic Press, Burlington, MA

    Google Scholar 

  • Blundell JE, Jebb SA, Stubbs RJ et al. (2006) Effect of rimonabant on energy intake, motivation to eat and body weight with or without hypocaloric diet: the REBA study. International Congress on Obesity, Sydney, Australia (poster)

    Google Scholar 

  • Bodnar RJ (2004) Endogenous opioids and feeding behavior: a 30-year historical perspective. Peptides 25:697–725

    PubMed  CAS  Google Scholar 

  • Cannon WB (1932) The wisdom of the body. WW Norton & Company, New York

    Google Scholar 

  • Cani PD, Montoya ML, Neyrinck AM, Delzenne NM, Lambert DM (2004) Potential modulation of plasma ghrelin and glucagon-like peptide-l by anorexigenic cannabinoid compounds, SR141716A (rimonabant) and oleoylethanolamide. Br J Nutr 92:757–761

    PubMed  CAS  Google Scholar 

  • Chee MJ, Colmers WF (2008) Y eat? Nutrition 24:869–877

    PubMed  CAS  Google Scholar 

  • Chen R, Huang R, Shen C et al. (2004) Synergistic effects of cannabinoid inverse agonist AM251 and opioid antagonist nalmefene on food intake in mice. Brain Res Brain Res Rev 999:227–230

    CAS  Google Scholar 

  • Colombo G, Agabio R, Diaz G et al. (1998) Appetite suppression and weight loss after the cannabinoid antagonist SR 141716. Life Sci 63:PL113–PL117

    PubMed  CAS  Google Scholar 

  • Cooper SJ, Kirkham TC (1993) Opioid mechanisms in the control of food consumption and taste preferences. In: Herz A, Akil H, Simon EJ (eds) Handbook of experimental pharmacology, vol. 104, part II. Springer, Berlin

    Google Scholar 

  • Cota D, Marsicano G, Tschop M et al. (2003) The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 112:423–431

    PubMed  CAS  Google Scholar 

  • Di Marzo V, Matias I (2005) Endocannabinoid control of food intake and energy balance. Nature Neurosci 8:585–589

    PubMed  Google Scholar 

  • Di Marzo V, Goparaju SK, Wang L et al. (2001) Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410:822–825

    PubMed  Google Scholar 

  • Drewnowski A, Krahn DD, Demitrack MA et al. (1992) Taste responses and preferences for sweet high-fat foods: evidence for opioid involvement. Physiol Behav 51:371–379

    PubMed  CAS  Google Scholar 

  • Figlewicz Latteman D, Sanders NM, MacDonald A et al. (2007) Integration of peripheral adiposity signals and psychological controls of appetite. In: Kirkham TC, Cooper SJ (eds) Appetite and body weight: integrative systems and the development of anti-obesity drugs. Academic Press, Burlington, MA

    Google Scholar 

  • Freedland CS, Poston JS, Porrino LJ (2000) Effects of SR141716A, a central cannabinoid receptor antagonist, on food-maintained responding. Pharmacol Biochem Behav 67:265–270

    Google Scholar 

  • Gallate J, McGregor I (1999) The motivation for beer in rats: effects of ritanserin, naloxone and SR 141716. Psychopharmacology 142:302–308

    PubMed  CAS  Google Scholar 

  • Gallate J, Saharov T, Mallet P et al. (1999) Increased motivation for beer in rats following administration of a cannabinoid CB1 receptor agonist. Eur J Pharmacol 370:233–240

    PubMed  CAS  Google Scholar 

  • Gaoni Y, Mechoulam R (1971) The isolation and structure of delta-1-tetrahydrocannabinol and other neutral cannabinoids from hashish. J Am Chem Soc 93:217–224

    PubMed  CAS  Google Scholar 

  • Gardner E, Vorel S (1998) Cannabinoid transmission and reward-related events. Neurobiol Disease 5:502–533

    CAS  Google Scholar 

  • Gibson EL, Brunstrom JM (2007) Learned influences on appetite, food choice, and intake: evidence in human beings. In: Kirkham TC, Cooper SJ (eds) Appetite and body weight: integrative systems and the development of anti-obesity drugs. Academic Press, Burlington, MA

    Google Scholar 

  • Gomez R, Navarro M et al. (2002) A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J Neurosci 22:9612–9617

    PubMed  CAS  Google Scholar 

  • Hao S, Avraham Y, Mechoulam R et al. (2000) Low dose anandamide affects food intake, cognitive function, neurotransmitter and corticosterone levels in diet-restricted mice. Eur J Pharmacol 392:147–156

    PubMed  CAS  Google Scholar 

  • Harrold J, Elliott C, King P et al. (2002) Down-regulation of cannabinoid-1 (CB-1) receptors in specific extrahypothalamic regions of rats with dietary obesity: a role for endogenous cannabinoids in driving appetite for palatable food? Brain Res 952:232–238

    PubMed  CAS  Google Scholar 

  • Higgs S, Williams CM, Kirkham TC (2003) Cannabinoid influences on palatability: microstructural analysis of sucrose drinking after delta(9)-tetrahydrocannabinol, anandamide, 2-arachidonoyl glycerol and SR141716. Psychopharmacology (Berl) 165:370–377

    CAS  Google Scholar 

  • Hildebrandt AL, Kelly-Sullivan DM, Black SC (2003) Antiobesity effects of chronic cannabinoid CB1 receptor antagonist treatment in diet-induced obese mice. Eur J Pharmacol 462:125–132

    PubMed  CAS  Google Scholar 

  • Jamshidi N, Taylor D (2001) Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br J Pharmacol 134:1151–1154

    PubMed  CAS  Google Scholar 

  • Jarrett MM, Limebeer CL, Parker LA (2005) Effect of delta9-tetrahydrocannabinol on sucrose palatability as measured by the taste reactivity test. Physiol Behav 86:475–479

    PubMed  CAS  Google Scholar 

  • Jarrett MM, Scantlebury J, Parker LA (2007) Effect of delta(9)-tetrahydrocannabinol on quinine palatability and AM251 on sucrose and quinine palatability using the taste reactivity test. Physiol Behav 90:425–430

    PubMed  CAS  Google Scholar 

  • Kalra SP (2008) Central leptin insufficiency syndrome: an interactive etiology for obesity, metabolic and neural diseases and for designing new therapeutic interventions. Peptides 29:127–138

    PubMed  CAS  Google Scholar 

  • Kirkham TC (1990) Enhanced anorectic potency of naloxone in rats sham feeding 30% sucrose: reversal by repeated naloxone administration. Physiol Behav 47:419–426

    PubMed  CAS  Google Scholar 

  • Kirkham TC (1990b) Enhanced anorectic potency of naloxone in rats sham feeding 30% sucrose: reversal by repeated naloxone administration. Physiol Behav 47:419–426

    PubMed  CAS  Google Scholar 

  • Kirkham TC (2005) Endocannabinoids in the regulation of appetite and body weight. Behav Pharmacol 16:297–313

    PubMed  CAS  Google Scholar 

  • Kirkham TC, Cooper SJ (1988) Naloxone attenuation of sham feeding is modified by manipulation of sucrose concentration. Physiol Behav 44:491–494

    PubMed  CAS  Google Scholar 

  • Kirkham TC, Williams CM (2001a) Endogenous cannabinoids and appetite. Nutr Res Rev 14:65–86

    PubMed  CAS  Google Scholar 

  • Kirkham TC, Williams CM (2001b) Endocannabinoids: neuromodulators of food craving? In: Hetherington M (ed) Food cravings and addiction. Leatherhead Publishing, Leatherhead, UK

    Google Scholar 

  • Kirkham TC, Williams CM (2001c) Synergistic effects of opioid and cannabinoid antagonists on food intake. Psychopharmacology (Berl) 153:267–270

    CAS  Google Scholar 

  • Kirkham TC, Williams CM, Fezza F et al. (2002) Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol 136:550–557

    PubMed  CAS  Google Scholar 

  • Koch JE, Matthews SM (2001) Delta9-tetrahydrocannabinol stimulates palatable food intake in Lewis rats: effects of peripheral and central administration. Nutr Neurosci 4:179–187

    PubMed  CAS  Google Scholar 

  • Kola B, Farkas I, Christ-Crain M et al. (2008) The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system. PLoS ONE 3:e1797

    PubMed  Google Scholar 

  • Konturek PC, Konturek JW, Czesnikiewicz-Guzik et al. (2005) Neuro-hormonal control food intake; basic mechanisms and clinical implications. J Physiol Pharmacol 56(Suppl 6):5–25

    Google Scholar 

  • Leventhal L, Kirkham TC, Cole JL et al. (1995) Selective actions of central mu and kappa opioid antagonists upon sucrose intake in sham-fed rats. Brain Res 685:205–210

    PubMed  CAS  Google Scholar 

  • Levitsky DA (2002) Putting behavior back into feeding behavior: a tribute to George Collier. Appetite 38:143–148

    PubMed  Google Scholar 

  • Levitsky DA (2005) The non-regulation of food intake in humans: Hope for reversing the epidemic. 86:623–632

    CAS  Google Scholar 

  • Lowe MR, Butryn ML (2007) Hedonic hunger: a new dimension of appetite? Physiol Behav 91:432–439

    PubMed  CAS  Google Scholar 

  • Mahler SV, Smith KS, Berridge KC (2007) Endocannabinoid hedonic hotspot for sensory pleasure: anandamide in nucleus accumbens shell enhances ‘liking’ of a sweet reward. Neuropsychopharmacology 32:2267–2278

    PubMed  CAS  Google Scholar 

  • Maljaars J, Peters HP, Masclee AM (2007) The gastrointestinal tract: neuroendocrine regulation of satiety and food intake. Aliment Pharmacol Ther 26(Suppl 2):241–250

    PubMed  Google Scholar 

  • Marín Bivens CL, Thomas WJ, Stanley BG (1998) Similar feeding patterns are induced by perifornical neuropeptide Y injection and by food deprivation. Brain Res 782:271–280

    PubMed  Google Scholar 

  • Matias I, Cristino L, di Marzo V (2008) Endocannabinoids: some like it fat (and sweet too). J Neuroendocrinol 20(Suppl 1):100–109

    PubMed  CAS  Google Scholar 

  • Melis T, Succu S, Sanna F et al. (2007) The cannabinoid antagonist SR 141716A (Rimonabant) reduces the increase of extra-cellular dopamine release in the rat nucleus accumbens induced by a novel high palatable food. Neurosci Lett 419:231–235

    PubMed  CAS  Google Scholar 

  • Meschler JP, Howlett AC (2001) Signal transduction interactions between CB1 cannabinoid and dopamine receptors in the rat and a monkey striatum. Neuropharmacology 14:918–926

    Google Scholar 

  • Miller CC, Murray TF, Freeman KG et al. (2004) Cannabinoid agonist, CP 55, 940, facilitates intake of palatable foods when injected into the hindbrain. Physiol Behav 80:611–616

    PubMed  CAS  Google Scholar 

  • Osei-Hyiamen D, DePetrillo M, Pacher P et al. (2005) Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Invest 115:1298–1305

    Google Scholar 

  • Pecina S, Berridge KC (2000) Opioid site in nucleus accumbens shell mediates eating and hedonic ‘liking’ for food: map based on microinjection Fos plumes. Brain Res 863:71–86

    PubMed  CAS  Google Scholar 

  • Pério A, Barnouin MC, Poncelet M et al. (2001) Activity of SR141716 on post-reinforcement pauses in operant responding for sucrose reward in rats. Behav Pharmacol 12:641–645

    PubMed  Google Scholar 

  • Pertwee RG (2008) Ligands that target cannabinoid receptors in the brain: from THC to anandamide and beyond. Addict Biol 13(2):147–159

    PubMed  CAS  Google Scholar 

  • Pickel VM, Chan J, Kash TL et al. (2004) Compartment-specific localization of cannabinoid (CB1) and mu-opioid receptors in rat nucleus accumbens. Neuroscience 127:101–112

    PubMed  CAS  Google Scholar 

  • Pickel VM, Chan J, Kearn et al. (2006) Targeting dopamine D2 and cannabinoid-1 (CB-1) in rat nucleus accumbens. J Comp Neurol 495:299–313

    PubMed  CAS  Google Scholar 

  • Poncelet M, Maruani J, Calassi R et al. (2003) Overeating, alcohol and sucrose consumption decrease in CB1 receptor deleted mice. Neurosci Lett 343:216–218

    PubMed  CAS  Google Scholar 

  • Ravinet Trillou C, Arnone M, Delgorge C et al. (2003) Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice. Am J Physiol Regul Integr Comp Physiol 284:R345–R353

    PubMed  Google Scholar 

  • Riegel AC, Lupica CR (2004) Independent presynaptic and postsynaptic mechanisms regulate endocannabinoid signaling at multiple synapses in the ventral tegmental area. J Neurosci 24:11070–11078

    PubMed  CAS  Google Scholar 

  • Rinaldi-Carmona M, Barth F, Congy C et al. (2004) SR147778 [5-(4-Bromophenyl)-1–1(2, 4-dichlorophenyl)-4-ethyl -N-(1-piperidinyl)-1H-pyrazole-3-carboxamide], a new potent and selective antagonist of the CB1 cannabinoid receptor: biochemical and pharmacolo- gical characterization. J Pharmacol Exp Ther 310:905–914

    PubMed  CAS  Google Scholar 

  • Rolls BJ (1986) Sensory-specific satiety. Nutr Rev 44:93–101

    PubMed  CAS  Google Scholar 

  • Rutkowska M (2004) The effect of AM251, a cannabinoid CB1 receptor antagonist, on food intake in rats. Acta Pol Pharm 61:401–403

    PubMed  CAS  Google Scholar 

  • Sanchis-Segura C, Cline B, Marsicano G et al. (2004) Reduced sensitivity to reward in CB1 knockout mice. Psychopharmacology (Berl) 176:223–232

    CAS  Google Scholar 

  • Scarpaci PJ, Zhang Y (2007) Elevated leptin: consequence or cause of obesity? Front Biosci 12:3531–3544

    Google Scholar 

  • Shearman L, Rosko K, Fleischer R et al. (2003) Antidepressant-like and anorectic effects of the cannabinoid CB1 receptor inverse agonist AM251 in mice. Behav Pharmacol 14:573–582

    PubMed  CAS  Google Scholar 

  • Simiand J, Keane M, Keane P et al. (1998) SR 141716, a CB1 cannabinoid receptor antagonist, selectively reduces sweet food intake in marmoset. Behav Pharmacol 9:179–181

    Google Scholar 

  • Solinas M, Goldberg SR (2005) Motivational effects of cannabinoids and opioids on food reinforcement depend on simultaneous activation of cannabinoid and opioid systems. Neuropsychopharmacology 30:2035–2045

    PubMed  CAS  Google Scholar 

  • Solinas M, Justinova Z, Goldberg SR et al. (2006) Anandamide administration alone and after inhibition of fatty acid amide hydrolase (FAAH) increases dopamine levels in the nuclear accumbens shell in rats. J. Neurochem 98:408–419

    PubMed  CAS  Google Scholar 

  • Solinas M, Goldberg SR, Piomelli D (2008) The endocannabinoid system in brain reward processes. Br J Pharmacol 154:369–383

    PubMed  CAS  Google Scholar 

  • Solinas M, Zangen A, Thiriet N, Goldberg SR (2004) β-endorphin elevations in the ventral tegmental area regulate the discriminative effects of Δ9-tetrahydrocannabinol. Eur J Neurosci 19:3183–3192

    PubMed  CAS  Google Scholar 

  • Soria-Gomez E, Matias I et al. (2007) Pharmacological enhancement of the endocannabinoid system in the nucleus accumbens shell stimulates food intake and increases c-Fos expression in the hypothalamus. Br J Pharmacol 151:1109–1116

    PubMed  CAS  Google Scholar 

  • Speakman JR (2007) Gene environment interactions and the origin of the modern obesity epidemic: a novel “nonadaptive drift” scenario. In: Kirkham TC, Cooper SJ (eds) Appetite and body weight: integrative systems and the development of anti-obesity drugs. Academic Press, Burlington, MA

    Google Scholar 

  • Stratford TR (2007) The nucleus accumbens shell as a model of integrative subcortical forebrain systems regulating food intake. In: Kirkham TC, Cooper SJ (eds) Appetite and body weight: integrative systems and the development of anti-obesity drugs. Academic Press, Burlington, MA

    Google Scholar 

  • Sullivan RJ, Hagen EH, Hammerstein P (2008) Revealing the paradox of drug reward in human evolution. Proc Biol Sci 275:1231–1241

    PubMed  Google Scholar 

  • Tallett AJ, Blundell JE et al. (2007a) Grooming, scratching and feeding: role of response competition in acute anorectic response to rimonabant in male rats. Psychopharmacology (Berl) 195:27–39

    CAS  Google Scholar 

  • Tallett AJ, Blundell JE et al. (2007b) Acute anorectic response to cannabinoid CB1 receptor antagonist/inverse agonist AM 251 in rats: indirect behavioural mediation. Behav Pharmacol 18:591–600

    PubMed  Google Scholar 

  • Tart C (1970) Marijuana intoxication: common experiences. Nature 226:701–704

    PubMed  CAS  Google Scholar 

  • Tucci SA, Rogers EK, Korbonits M, Kirkham TC (2004) The cannabinoid CBI receptor antagonist SR141716 blocks the orexigenic effects of intrahypothalamic ghrelin. Br J Pharmacol 143:520–523

    PubMed  CAS  Google Scholar 

  • Valassi E, Scacchi M, Cavagnini F (2008) Neuroendocrine control of food intake. Nutr Metab Cardiovascular Dis 18:158–168

    CAS  Google Scholar 

  • Valenti M, Viganòb D, Cascioa MG et al. (2004) Differential diurnal variations of anandamide and 2 arachidonoyl-glycerol levels in rat brain. Cell Mol Life Sci 61:945–950

    PubMed  CAS  Google Scholar 

  • van der Stelt M, Di Marzo V (2003) The endocannabinoid system in the basal ganglia and in the mesolimbic reward system: implications for neurological and psychiatric disorders. Eur J Pharmacol 480:133–150

    PubMed  Google Scholar 

  • Verty A, McGregor I, Mallet P (2004a) The dopamine receptor antagonist SCH 23390 attenuates feeding induced by Delta9-tetrahydrocannabinol. Brain Res 1020:188–195

    PubMed  CAS  Google Scholar 

  • Verty AN, McGregor IS, Mallet PE (2004b) Consumption of high carbohydrate, high fat, and normal chow is equally suppressed by a cannabinoid receptor antagonist in non-deprived rats. Neurosci Lett 354:217–220

    PubMed  CAS  Google Scholar 

  • Vickers S, Webster L, Wyatt A et al. (2003) Preferential effects of the cannabinoid CB1 receptor antagonist, SR 141716, on food intake and body weight gain of obese (fa/fa) compared to lean Zucker rats. Psychopharmacology (Berl) 167:103–111

    CAS  Google Scholar 

  • Werner N, Koch J (2003) Effects of the cannabinoid antagonists AM281 and AM630 on deprivation-induced intake in Lewis rats. Brain Res 967:290–292

    PubMed  CAS  Google Scholar 

  • Wiley JL, Burston JJ, Leggett DC et al. (2005) CB(1) cannabinoid receptor-mediated modulation of food intake in mice. Br J Pharmacol 145:293–300

    PubMed  CAS  Google Scholar 

  • Williams CM, Kirkham TC (1999) Anandamide induces overeating: mediation by central cannabinoid (CB1) receptors. Psychopharmacology (Berl) 143:315–317

    CAS  Google Scholar 

  • Williams CM, Kirkham TC (2002a) Reversal of delta 9-THC hyperphagia by SR141716 and naloxone but not dexfenfluramine. Pharmacol Biochem Behav 71:333–340

    PubMed  CAS  Google Scholar 

  • Williams CM, Kirkham TC (2002b) Observational analysis of feeding induced by Delta9-THC and anandamide. Physiol Behav 76:241–250

    PubMed  CAS  Google Scholar 

  • Williams CM, Rogers PJ, Kirkham TC (1998) Hyperphagia in pre-fed rats following oral delta9 THC. Physiol Behav 65:343–346

    PubMed  CAS  Google Scholar 

  • Williams CM, Rogers PJ, Kirkham TC (1998b) Hyperphagia in pre-fed rats following oral delta9-THC. Physiol Behav 65:343–346

    PubMed  CAS  Google Scholar 

  • Woods SC, Ramsay DS (2007) Homeostasis: beyond Curt Richter. Appetite 49(2):388–398

    PubMed  Google Scholar 

  • Wren AM, Bloom SR (2007) Gut hormones and appetite control. Gastroenterology 132:2116–2130

    PubMed  CAS  Google Scholar 

  • Yeomans MR (2007) The role of palatability in control of human appetite: implications for understanding and treating obesity. In: Kirkham TC, Cooper SJ (eds) Appetite and body weight: integrative systems and the development of anti-obesity drugs. Academic Press, Burlington, MA

    Google Scholar 

  • Yeomans MR, Gray RW (1996) Selective effects of naltrexone on food pleasantness and intake. Physiol Behav 60:439–446

    PubMed  CAS  Google Scholar 

  • Zhou D, Shearman L (2004) Voluntary exercise augments acute effects of CB1-receptor inverse agonist on body weight loss in obese and lean mice. Pharmacol Biochem Behav 77:117–125

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim C. Kirkham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kirkham, T.C. (2009). Endocannabinoids and the Non-Homeostatic Control of Appetite. In: Kendall, D., Alexander, S. (eds) Behavioral Neurobiology of the Endocannabinoid System. Current Topics in Behavioral Neurosciences, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88955-7_9

Download citation

Publish with us

Policies and ethics