Skip to main content

Pharmacological Tools in Endocannabinoid Neurobiology

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 1))

Abstract

Pharmacological and biochemical investigations on the endocannabinoid system are facilitated by the availability of compounds which interact with its constituents in specific and understandable ways. This chapter describes the main representatives of several classes of chemicals employed as pharmacological tools in this field, focusing on small organic compounds having, where possible, a drug-like structure. Many compounds having different intrinsic activity and selectivity towards the G-protein coupled receptors (GPCR) CB1 and CB2 are now available and are currently employed in research protocols. Recently, allosteric ligands for CB1 receptor and selective ligands for GPR55, a newly characterised GPCR, have also been described in the literature. As for compounds affecting endocannabinoid levels in living tissues, many classes of selective and, in some cases, drug-like inhibitors of FAAH are available, while only compounds with poor selectivity or in vivo activity are known to inhibit other enzymes involved in endocannabinoid catabolism, such as NAAA or MGL, and in endocannabinoid biosynthesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2-AG:

2-Arachidonoylglycerol

AEA:

Anandamide

CCP:

N-(cyclohexylcarbonyl)pentadecylamine

DAG:

Diacylglycerol

ECB:

Endocannabinoid

FAAH:

Fatty acid amide hydrolase

GPCR:

G protein-coupled receptor

MGL:

Monoacylglycerol lipase

NAAA:

N-Acylethanolamine acid amidase

NAE:

N-Acylethanolamine

NAPE-PLD:

N-Acylphosphatidylethanolamine phospholipase D

OEA:

N-Oleoylethanolamine

PA:

Phosphatidic acid

PEA:

N-Palmitoylethanolamine

PLC:

Phospholipase C

TRPV1:

Transient receptor potential vanilloid type 1

Δ9-THC:

Δ9-Tetrahydrocannabinol

References

  • Ahn K, Johnson DS, Fitzgerald LR et al. (2007) Novel mechanistic class of fatty acid amide hydrolase inhibitors with remarkable selectivity. Biochemistry 46:13019–13030

    PubMed  CAS  Google Scholar 

  • Alexander JP, Cravatt BF (2005) Mechanism of carbamate inactivation of FAAH: implications for the design of covalent inhibitors and in vivo functional probes for enzymes. Chem Biol 12:1179–1187

    PubMed  CAS  Google Scholar 

  • Bari M, Battista N, Fezza F et al. (2006) New insights into endocannabinoid degradation and its therapeutic potential. Mini Rev Med Chem 6:257–268

    PubMed  CAS  Google Scholar 

  • Bayewitch M, Rhee M-H, Avidor-Reiss T et al. (1996) (-)-Δ9-Tetrahydrocannabinol antagonizes the peripheral cannabinoid receptor-mediated inhibition of adenylyl cyclase. J Biol Chem 27:19902–19905

    Google Scholar 

  • Beltramo M, Stella N, Calignano A et al. (1997) Functional role of high-affinity anandamide transport, as revealed by selective inhibition. Science 277:1094–1097

    PubMed  CAS  Google Scholar 

  • Bingham B, Jones PG, Uveges AJ et al. (2007) Species-specific in vitro pharmacological effects of the cannabinoid receptor 2 (CB2) selective ligand AM1241 and its resolved enantiomers. Br J Pharmacol 151:1061–1070

    PubMed  CAS  Google Scholar 

  • Bisogno T, Howell F, Williams G et al. (2003) Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol 163:463–468

    PubMed  CAS  Google Scholar 

  • Bisogno T, Cascio MG, Saha B et al. (2006) Development of the first potent and specific inhibitors of endocannabinoid biosynthesis. Biochim Biophys Acta 1761:205–212

    PubMed  CAS  Google Scholar 

  • Boger DL, Sato H, Lerner AE et al. (2000) Exceptionally potent inhibitors of fatty acid amide hydrolase: the enzyme responsible for degradation of endogenous oleamide and anandamide. Proc Natl Acad Sci USA 97:5044–5049

    PubMed  CAS  Google Scholar 

  • Boger DL, Miyauchi H, Du W et al. (2005) Discovery of a potent, selective, and efficacious class of reversible alpha-ketoheterocycle inhibitors of fatty acid amide hydrolase effective as analgesics. J Med Chem 48:1849–1856

    PubMed  CAS  Google Scholar 

  • Bortolato M, Mangieri RA, Fu J et al. (2007) Antidepressant-like activity of the fatty acid amide hydrolase inhibitor URB597 in a rat model of chronic mild stress. Biol Psychiatry 62:1103–1110

    PubMed  CAS  Google Scholar 

  • Brown AJ (2007) Novel cannabinoid receptors. Br J Pharmacol 152:567–575

    PubMed  CAS  Google Scholar 

  • De Petrocellis L, Melck D, Ueda N et al. (1997) Novel inhibitors of brain neuronal and basophilic anandamide amidohydrolase. Biochem Biophys Res Commun 231:82–88

    PubMed  Google Scholar 

  • Deutsch DG, Chin SA (1993) Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochem Pharmacol 46:791–796

    PubMed  CAS  Google Scholar 

  • Deutsch DG, Lin S, Hill WA et al. (1997) Fatty acid sulfonyl fluorides inhibit anandamide metabolism and bind to the cannabinoid receptor. Biochem Biophys Res Commun 3:217–221

    Google Scholar 

  • Devane WA, Dysarz FA III, Johnson MR et al. (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34:605–613

    PubMed  CAS  Google Scholar 

  • Di Marzo V, De Petrocellis L, Sepe N et al. (1996) Biosynthesis of anandamide and related acylethanolamides in mouse J774 macrophages and N18 neuroblastoma cells. Biochem J 316:977–984

    PubMed  Google Scholar 

  • Di Marzo V, Bisogno T, De Petrocellis L et al. (1999) Biosynthesis and inactivation of the endocannabinoid 2-arachidonoylglycerol in circulating and tumoral macrophages. Eur J Biochem 264:258–267

    PubMed  Google Scholar 

  • Di Marzo V, Bisogno T, De Petrocellis L et al. (2001) Highly selective CB(1) cannabinoid receptor ligands and novel CB(1)/VR(1) vanilloid receptor “hybrid” ligands. Biochem Biophys Res Commun 281:444–451

    PubMed  Google Scholar 

  • Dinh TP, Carpenter D, Leslie FM et al. (2002a) Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci USA 99:10819–10824

    PubMed  CAS  Google Scholar 

  • Dinh TP, Freund TF, Piomelli D (2002b) A role for monoglyceride lipase in 2-arachidonoylglycerol inactivation. Chem Phys Lipids 31:149–158

    Google Scholar 

  • Elsohly MA (2002) Chemical constituents of cannabis. In: Grotenherman F, Russo E (eds) Cannabis and cannabinoids. Pharmacology, toxicology and therapeutic potential. Haworth Press, Binghamton, NY

    Google Scholar 

  • Ermann M, Riether D, Walker ER et al. (2008) Arylsulfonamide CB2 receptor agonists: SAR and optimization of CB2 selectivity. Bioorg Med Chem Lett 18:1725–1729

    PubMed  CAS  Google Scholar 

  • Fegley D, Kathuria S, Mercier R et al. (2004) Anandamide transport is independent of fatty-acid amide hydrolase activity and is blocked by the hydrolysis-resistant inhibitor AM1172. Proc Natl Acad Sci USA 101:8756–8761

    PubMed  CAS  Google Scholar 

  • Felder CC, Joyce KE, Briley EM et al. (1995) Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors. Mol Pharmacol 48:443–450

    PubMed  CAS  Google Scholar 

  • Fong TM, Guan XM, Marsh DJ et al. (2007) Antiobesity efficacy of a novel cannabinoid-1 receptor inverse agonist, N-[(1S, 2S)-3-(4-chlorophenyl)-2-(3-cyanophenyl)-1-methylpropyl]-2-methyl-2-[[5-(trifluoromethyl) pyridin-2-yl]oxy]propanamide (MK-0364), in rodents. J Pharmacol Exp Ther 321:1013–1022

    PubMed  CAS  Google Scholar 

  • Fowler CJ, Tiger G, Ligresti A et al. (2004) Selective inhibition of anandamide cellular uptake versus enzymatic hydrolysis: a difficult issue to handle. Eur J Pharmacol 492:1–11

    PubMed  CAS  Google Scholar 

  • Fowler CJ, Holt S, Nilsson O et al. (2005) The endocannabinoid signaling system: pharmacological and therapeutic aspects. Pharmacol Biochem Behav 81:248–262

    PubMed  CAS  Google Scholar 

  • Fu J, Gaetani S, Oveisi F et al. (2003) Oleoylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 425:90–93

    PubMed  CAS  Google Scholar 

  • Gaoni Y, Mechoulam R (1964) Isolation, structure and partial synthesis of an active constituent of hashish. J Am Chem Soc 86:1646–1647

    CAS  Google Scholar 

  • Gardner A, Mallet PE (2006) Suppression of feeding, drinking, and locomotion by a putative cannabinoid receptor ‘silent antagonist’. Eur J Pharmacol 530:103–106

    PubMed  CAS  Google Scholar 

  • Gertsch J, Raduner S, Altmann KH (2006) New natural noncannabinoid ligands for cannabinoid type-2 (CB2) receptors. J Recept Signal Transduct Res 26:709–730

    PubMed  CAS  Google Scholar 

  • Ghafouri N, Tiger G, Razdan RK et al. (2004) Inhibition of monoacylglycerol lipase and fatty acid amide hydrolase by analogues of 2-arachidonoylglycerol. Br J Pharmacol 143:774–784

    PubMed  CAS  Google Scholar 

  • Giblin GM, O’Shaughnessy CT, Naylor A et al. (2007) Discovery of 2-[(2, 4-dichlorophenyl) amino]-N-[(tetrahydro-2H-pyran-4-yl) methyl]-4-trifluoromethyl)-5-pyrimidinecarboxamide, a selective CB2 receptor agonist for the treatment of inflammatory pain. J Med Chem 50:2597–2600

    PubMed  CAS  Google Scholar 

  • Glaser S, Abumrad N, Fatade F et al. (2003) Evidence against the presence of an anandamide transporter. Proc Natl Acad Sci USA 100:4269–4274

    PubMed  CAS  Google Scholar 

  • Gobbi G, Bambico FR, Mangieri et al. (2005) Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc Natl Acad Sci USA 102:18620–18625

    Google Scholar 

  • Gonsiorek W, Hesk D, Chen SC et al. (2006) Characterization of peripheral human cannabinoid receptor (hCB2) expression and pharmacology using a novel radioligand, [35S]Sch225336. J Biol Chem 281:28143–28151

    PubMed  CAS  Google Scholar 

  • Gonsiorek W, Lunn CA, Fan X et al. (2007) Sch35966 is a potent, selective agonist at the peripheral cannabinoid receptor (CB2) in rodents and primates. Br J Pharmacol 151:1262–1271

    PubMed  CAS  Google Scholar 

  • Gonsorek W, Lunn C, Fan X et al. (2000) Endocannabinoid 2-AG is a full agonist through human type 2 cannabinoid receptor: antagonism by anandamide. Mol Pharmacol 57:1045–1050

    Google Scholar 

  • Guindon J, Hohmann AG (2008) Cannabinoid CB2 receptors: a therapeutic target for the treatment of inflammatory and neuropathic pain. Br J Pharmacol 153:319–334

    PubMed  CAS  Google Scholar 

  • Guindon J, Desroches J, Beaulieu P (2007) The antinociceptive effects of intraplantar injections of 2-arachidonoyl glycerol are mediated by cannabinoid CB2 receptors. Br J Pharmacol 150:693–701

    PubMed  CAS  Google Scholar 

  • Hanus L, Breuer A, Tchilibon S et al. (1999) HU-308: a specific agonist for CB2, a peripheral cannabinoid receptor. Proc Natl Acad Sci USA 96:14228–14233

    PubMed  CAS  Google Scholar 

  • Hillard CJ, Manna S, Greenberg MJ et al. (1999) Synthesis and characterization of potent and selective agonists of the neuronal cannabinoid receptor (CB1). J Pharmacol Exp Ther 289:1427–1433

    PubMed  CAS  Google Scholar 

  • Hillard CJ, Shi L, Tuniki VR et al. (2007) Studies of anandamide accumulation inhibitors in cerebellar granule neurons: comparison to inhibition of fatty acid amide hydrolase. J Mol Neurosci 33:18–24

    PubMed  CAS  Google Scholar 

  • Ho W-SV, Hillard CJ (2005) Modulators of endocannabinoid enzymic hydrolysis and membrane transport. In: Pertwee RG (ed) Cannabinoids. Handbook of experimental pharmacology. Springer, Heidelberg

    Google Scholar 

  • Hohmann AG, Suplita RL, Bolton NM et al. (2005) An endocannabinoid mechanism for stress-induced analgesia. Nature 435:1108–1112

    PubMed  CAS  Google Scholar 

  • Horswill JG, Bali U, Shaaban S et al. (2007) PSNCBAM-1, a novel allosteric antagonist at cannabinoid CB1 receptors with hypophagic effects in rats. Br J Pharmacol 152:805–814

    PubMed  CAS  Google Scholar 

  • Howlett AC, Barth F, Bonner TI et al. (2002) International union of pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202

    PubMed  CAS  Google Scholar 

  • Huffman JW, Liddle J, Yu S et al. (1999) 3-(10, 10-Dimethylbutyl)-1-deoxy-Δ8-THC and related compounds: synthesis of selective ligands for the CB2 receptor. Bioorg Med Chem 7:2905–2914

    PubMed  CAS  Google Scholar 

  • Iwamura H, Suzuki H, Ueda Y et al. (2001) In vitro and in vivo pharmacological characterization of JTE-907, a novel selective ligand for cannabinoid CB2 receptor. J Pharmacol Exp Ther 296:420–425

    PubMed  CAS  Google Scholar 

  • Jagerovic N, Fernandez-Fernandez C, Goya P (2008) CB1 cannabinoid antagonists: structure-activity relationships and potential therapeutic applications. Curr Top Med Chem 8:205–230

    PubMed  CAS  Google Scholar 

  • Jarrahian A, Manna S, Edgemond WS et al. (2000) Structure–activity relationships among N-arachidonylethanolamine (Anandamide) head group analogues for the anandamide transporter. J Neurochem 74:2597–2606

    PubMed  CAS  Google Scholar 

  • Jayamanne A, Greenwood R, Mitchell VA et al. (2006) Actions of the FAAH inhibitor URB597 in neuropathic and inflammatory chronic pain models. Br J Pharmacol 147:281–288

    PubMed  CAS  Google Scholar 

  • Jonsson KO, Persson E, Fowler CJ (2006) The cannabinoid CB2 receptor selective agonist JWH133 reduces mast cell oedema in response to compound 48/80 in vivo but not the release of β-hexosaminidase from skin slices in vitro. Life Sci 78:598–606

    PubMed  CAS  Google Scholar 

  • Karlsson M, Contreras JA, Hellman U et al. (1997) cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. Evolutionary relationship to esterases, lysophospholipases, and haloperoxidases. J Biol Chem 272:27218–27223

    PubMed  CAS  Google Scholar 

  • Kathuria S, Gaetani S, Fegley et al. (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9:76–81

    Google Scholar 

  • Khanolkar AD, Lu D, Ibrahim M et al. (2007) Cannabilactones: a novel class of CB2 selective agonists with peripheral analgesic activity. J Med Chem 50:6493–6500

    PubMed  CAS  Google Scholar 

  • Kikuchi A, Ohashi K, Sugie Y et al. (2008) Pharmacological evaluation of a novel cannabinoid 2 (CB2) ligand, PF-03550096, in vitro and in vivo by using a rat model of visceral hypersensitivity. J Pharmacol Sci 106:219–224

    PubMed  CAS  Google Scholar 

  • King AR, Duranti A, Tontini A et al. (2007) URB602 inhibits monoacylglycerol lipase and selectively blocks 2-arachidonoylglycerol degradation in intact brain slices. Chem Biol 14:1357–1365

    PubMed  CAS  Google Scholar 

  • Koutek B, Prestwich GD, Howlett AC et al. (1994) Inhibitors of arachidonoyl ethanolamide hydrolysis. J Biol Chem 269:22937–22940

    PubMed  CAS  Google Scholar 

  • Kuster JE, Stevenson JI, Ward SJ et al. (1993) Aminoalkylindole binding in rat cerebellum: selective displacement by natural and synthetic cannabinoids. J Pharmacol Exp Ther 264:1352–1363

    PubMed  CAS  Google Scholar 

  • Labar G, Michaux C (2007) Fatty acid amide hydrolase: from characterization to therapeutics. Chem Biodivers 4:1882–1902

    PubMed  CAS  Google Scholar 

  • Labar G, Bauvois C, Muccioli GG et al. (2007) Disulfiram is an inhibitor of human purified monoacylglycerol lipase, the enzyme regulating 2-arachidonoylglycerol signaling. Chembiochem 23:1293–1297

    Google Scholar 

  • Lambert D, Fowler CJ (2005) The endocannabinoid system: drug targets, lead compounds, and potential therapeutic applications. J Med Chem 48:1–29

    Google Scholar 

  • Lichtman AH, Leung D, Shelton C et al. (2004) Reversible inhibitors of fatty acid amide hydrolase that promote analgesia: evidence for an unprecedented combination of potency and selectivity. J Pharmacol Exp Ther 311:441–448

    PubMed  CAS  Google Scholar 

  • Lo Verme J, Fu J, Astarita G et al. (2005) The nuclear receptor peroxisome proliferator-activated receptor-alpha mediates the anti-inflammatory actions of palmitoylethanolamide. Mol Pharmacol 67:15–19

    PubMed  CAS  Google Scholar 

  • Lodola A, Mor M, Hermann JC et al. (2005) QM/MM modelling of oleamide hydrolysis in fatty acid amide hydrolase (FAAH) reveals a new mechanism of nucleophile activation. Chem Commun (Camb) 35:4399–4401

    Google Scholar 

  • Lodola A, Mor M, Rivara S et al. (2008) Identification of productive inhibitor binding orientation in fatty acid amide hydrolase (FAAH) by QM/MM mechanistic modelling. Chem Commun (Camb) 2:214–216

    Google Scholar 

  • Lopez-Rodrıguez ML, Viso A, Ortega-Gutierrez S et al. (2003) Design, synthesis, and biological evaluation of new inhibitors of the endocannabinoid uptake: comparison with effects on fatty acid amidohydrolase. J Med Chem 46:1512–1522

    PubMed  Google Scholar 

  • Lunn CA, Fine JS, Rojas-Triana A et al. (2006) A novel cannabinoid peripheral cannabinoid receptor-selective inverse agonist blocks leukocyte recruitment in vivo. J Pharmacol Exp Ther 316:780–788

    PubMed  CAS  Google Scholar 

  • Maekawa T, Nojima H, Kuraishi Y et al. (2006) The cannabinoid CB2 receptor inverse agonist JTE-907 suppresses spontaneous itch-associated responses of NC mice, a model of atopic dermatitis. Eur J Pharmacol 542:179–183

    PubMed  CAS  Google Scholar 

  • Maione S, De Petrocellis L, de Novellis V et al. (2007) Analgesic actions of N-arachidonoyl-serotonin, a fatty acid amide hydrolase inhibitor with antagonistic activity at vanilloid TRPV1 receptors. Br J Pharmacol 150:766–781

    PubMed  CAS  Google Scholar 

  • Makara JK, Mor M, Fegley D et al. (2005) Selective inhibition of 2-AG hydrolysis enhances endocannabinoid signaling in hippocampus. Nat Neurosci 8:1139–1141

    PubMed  CAS  Google Scholar 

  • Makara JK, Mor M, Fegley D et al. (2007) Selective inhibition of 2-AG hydrolysis enhances endocannabinoid signaling in hippocampus. Nat Neurosci 10:134

    CAS  Google Scholar 

  • Manera C, Benetti V, Castelli MP et al. (2006) Design, synthesis, and biological evaluation of new 1, 8-naphthyridin-4(1H)-on-3-carboxamide and quinolin-4(1H)-on-3-carboxamide derivatives as CB2 selective agonists. J Med Chem 49:5947–5957

    PubMed  CAS  Google Scholar 

  • Martin BR, Wiley JL, Beletskaya I et al. (2006) Pharmacological characterization of novel water-soluble cannabinoids. J Pharmacol Exp Ther 318:1230–1239

    PubMed  CAS  Google Scholar 

  • McKinney MK, Cravat BF (2005) Structure and function of fatty acid amide hydrolase. Annu Rev Biochem 74:411–432

    PubMed  CAS  Google Scholar 

  • Mechoulam R (2005) Plant cannabinoids: a neglected pharmacological treasure trove. Br J Pharmacol 146:913–915

    PubMed  CAS  Google Scholar 

  • Mechoulam R, Peters M, Murillo-Rodriguez E et al. (2007) Cannabidiol-recent advances. Chem Biodivers 4:1678–1692

    PubMed  CAS  Google Scholar 

  • Mor M, Rivara S, Lodola A et al. (2004) Cyclohexylcarbamic acid 3’- or 4’-substituted biphenyl-3-yl esters as fatty acid amide hydrolase inhibitors: synthesis, quantitative structure-activity relationships, and molecular modelling studies. J Med Chem 47:4998–5008

    PubMed  CAS  Google Scholar 

  • Muccioli GG (2007) Blocking the cannabinoid receptors: drug candidates and therapeutic promises. Chem Biodivers 4:1805–1827

    PubMed  CAS  Google Scholar 

  • Muccioli GG, Xu C, Odah E et al. (2007) Identification of a novel endocannabinoid-hydrolysing enzyme expressed by microglial cells. J Neurosci 27:2883–2889

    PubMed  CAS  Google Scholar 

  • Murineddu G, Lazzari P, Ruiu S et al. (2006) Tricyclic pyrazoles. 4. Synthesis and biological evaluation of analogues of the robust and selective CB2 cannabinoid ligand 1-(2',4'-dichlorophenyl)-6-methyl-N-piperidin-1-yl-1,4-dihydroindeno[1,2-c]pyrazole-3 carboxamide. J Med Chem 49:7502–7512

    PubMed  CAS  Google Scholar 

  • Ohta H, Ishizaka T, Tatsuzuki M et al. (2008) Imine derivatives as new potent and selective CB2 cannabinoid receptor agonists with an analgesic action. Bioorg Med Chem 16:1111–1124

    PubMed  CAS  Google Scholar 

  • Okamoto Y, Wang J, Morishita J et al. (2007) Biosynthetic pathways of the endocannabinoid anandamide. Chem Biodivers 4:1842–1857

    PubMed  CAS  Google Scholar 

  • Ortar G, Ligresti A, De Petrocellis L et al. (2003) Novel selective and metabolically stable inhibitors of anandamide cellular uptake. Biochem Pharmacol 65:1473–1481

    PubMed  CAS  Google Scholar 

  • Pacher P, Batkay S, Kunos G (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58:390–462

    Google Scholar 

  • Pavon FJ, Bilbao A, Hernández-Folgado L et al. (2006) Antiobesity effects of the novel in vivo neutral cannabinoid receptor antagonist 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-3-hexyl-1H-1,2,4-triazole-LH 21. Neuropharmacology 51:358–366

    PubMed  CAS  Google Scholar 

  • Pertwee RG (2005a) Inverse agonism and neutral antagonism at cannabinoid CB1 receptors. Life Sci 76:1307–1324

    PubMed  CAS  Google Scholar 

  • Pertwee RG (2005b) Pharmacological action of cannabinoid. In: Pertwee RG (ed) Cannabinoids. Handbook of experimental pharmacology. Springer, Heidelberg

    Google Scholar 

  • Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 4:873–884

    PubMed  CAS  Google Scholar 

  • Piomelli D (2005) The endocannabinoid system: a drug discovery perspective. Curr Opin Investig Drugs 6:672–679

    PubMed  CAS  Google Scholar 

  • Piomelli D, Tarzia G, Duranti A et al. (2006) Pharmacological profile of the selective FAAH inhibitor KDS-4103 (URB597). CNS Drug Rev 12:21–38

    PubMed  CAS  Google Scholar 

  • Poso A, Huffman JW (2008) Targeting the cannabinoid CB2 receptor: modeling and structural determinants of CB2 selective ligands. Br J Pharmacol 153:335–346

    PubMed  CAS  Google Scholar 

  • Price MR, Baillie GL, Thomas A et al. (2006) Allosteric modulation of the cannabinoid CB1 receptor. Mol Pharmacol 68:1484–1495

    Google Scholar 

  • Rinaldi-Carmona M, Barth F, Heaulme M et al. (1994) SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett 350:240–244

    PubMed  CAS  Google Scholar 

  • Rinaldi-Carmona M, Barth F, Millan J et al. (1998) SR144528, the first potent and selective antagonist of the CB2 cannabinoid receptor. J Pharmacol Exp Ther 284:644–650

    PubMed  CAS  Google Scholar 

  • Ross RA (2007) Tuning the endocannabinoid system: allosteric modulators of the CB1 receptor. Br J Pharmacol 152:565–566

    PubMed  CAS  Google Scholar 

  • Ruiu S, Pinna AG, Marchese G et al. (2003) Synthesis and characterization of NESS 0327: a novel putative antagonist of the CB1 cannabinoid receptor. J Pharmacol Exp Ther 306:363–370

    PubMed  CAS  Google Scholar 

  • Russo R, Lo Verme J, La Rana G et al. (2007) The fatty-acid amide hydrolase inhibitor URB597 (cyclohexylcarbamic acid 3'-carbamoylbiphenyl-3-yl ester) reduces neurophatic pain after oral administration. J Pharmacol Exp Ther 322:236–242

    PubMed  CAS  Google Scholar 

  • Ryberg E, Larsson N, Sjögren S et al. (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152:1092–1101

    PubMed  CAS  Google Scholar 

  • Saario SM, Laitinen JT (2007a) Monoglyceride lipase as an enzyme hydrolyzing 2-arachidonoylglycerol. Chem Biodivers 4:1903–1913

    PubMed  CAS  Google Scholar 

  • Saario SM, Laitinen JT (2007b) Therapeutic potential of endocannabinoid-hydrolysing enzyme inhibitors. Basic Clin Pharmacol Toxicol 101:287–293

    PubMed  CAS  Google Scholar 

  • Saario SM, Savinainen JR, Laitinen JT et al. (2004) Monoglyceride lipase-like enzymatic activity is responsible for hydrolysis of 2-arachidonoylglycerol in rat cerebellar membranes. Biochem Pharmacol 67:1381–1387

    PubMed  CAS  Google Scholar 

  • Saario SM, Salo OM, Nevalainen T et al. (2005) Characterization of the sulfhydryl-sensitive site in the enzyme responsible for hydrolysis of 2-arachidonoyl-glycerol in rat cerebellar membranes. Chem Biol 12:649–656

    PubMed  CAS  Google Scholar 

  • Sink KS, McLaughlin PJ, Wood JA et al. (2008) The novel cannabinoid CB(1) receptor neutral antagonist AM4113 suppresses food intake and food-reinforced behavior but does not induce signs of nausea in rats. Neuropsychopharmacology 33:946–955

    PubMed  CAS  Google Scholar 

  • Song ZH, Bonner TI (1996) A lysine residue of the cannabinoid receptor is critical for receptor recognition by several agonists but not WIN55212–2. Mol Pharmacol 49:891–896

    PubMed  CAS  Google Scholar 

  • Sugiura T, Kishimoto S, Oka S et al. (2006) Biochemistry, pharmacology and physiology of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand. Prog Lipid Res 45:405–446

    PubMed  CAS  Google Scholar 

  • Suplita RL 2nd, Gutierrez T, Fegley D et al. (2006) Endocannabinoids at the spinal level regulate, but do not mediate, nonopioid stress-induced analgesia. Neuropharmacology 50:372–379

    PubMed  CAS  Google Scholar 

  • Thomas A, Ross RA, Saha B et al. (2004) 6"-Azidohex-2"-yne-cannabidiol: a potential neutral, competitive cannabinoid CB1 receptor antagonist. Eur J Pharmacol 487:213–221

    PubMed  CAS  Google Scholar 

  • Thomas A, Stevenson LA, Wease KN et al. (2005) Evidence that the plant cannabinoid Δ9-tetrahydrocannabivarin is a cannabinoid CB1 and CB2 receptor antagonist. Br J Pharmacol 146:917–926

    PubMed  CAS  Google Scholar 

  • Thomas B, Zhang Y, Brackeen M et al. (2006) Conformational characteristics of the interaction of SR141716A with the CB1 cannabinoid receptor as determined through the use of conformationally constrained analogs. AAPS J 8:E665–E671

    PubMed  Google Scholar 

  • Tonidandel L, Tarzia G, Antonietti F et al. (2006) On the formation of [H3C-S-S-CH3]+* ions from the bis(dimethylthio) mercury molecular ion. Rapid Commun Mass Spectrom 20:3154–3158

    PubMed  CAS  Google Scholar 

  • Tsuboi K, Hilligsmann C, Vandevoorde S et al. (2004) N-cyclohexanecarbonylpentadecylamine: a selective inhibitor of the acid amidase hydrolysing N-acylethanolamines, as a tool to distinguish acid amidase from fatty acid amide hydrolase. Biochem J 379(Pt 1):99–106

    PubMed  CAS  Google Scholar 

  • Tsuboi K, Sun YX, Okamoto Y et al. (2005) Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase. J Biol Chem 280:11082–11092

    PubMed  CAS  Google Scholar 

  • Tsuboi K, Takezaki N, Ueda N (2007) The N-acylethanolamine-hydrolyzing acid amidase (NAAA). Chem Biodivers 4:1914–1925

    PubMed  CAS  Google Scholar 

  • Ueda N, Yamanaka K, Terasawa Y et al. (1999) An acid amidase hydrolyzing anandamide as an endogenous ligand for cannabinoid receptors. FEBS Lett 454:267–270

    PubMed  CAS  Google Scholar 

  • Ueda N, Yamanaka K, Yamamoto S (2001) Purification and characterization of an acid amidase selective for N-palmitoylethanolamine, a putative endogenous anti-inflammatory substance. J Biol Chem 276:35552–35557

    PubMed  CAS  Google Scholar 

  • Valenzano KJ, Tafesse L, Lee G et al. (2005) Pharmacological and pharmacokinetic characterization of the cannabinoid receptor 2 agonist, GW405833, utilizing rodent models of acute and chronic pain, anxiety, ataxia and catalepsy. Neuropharmacology 48:658–672

    PubMed  CAS  Google Scholar 

  • Vandevoorde S (2008) Overview of the chemical families of fatty acid amide hydrolase and monoacylglycerol lipase inhibitors. Curr Top Med Chem 8:247–267

    PubMed  CAS  Google Scholar 

  • Vandevoorde S, Fowler CJ (2005) Inhibition of fatty acid amide hydrolase and monoacylglycerol lipase by the anandamide uptake inhibitor VDM11: evidence that VDM11 acts as an FAAH substrate. Br J Pharmacol 145:885–893

    PubMed  CAS  Google Scholar 

  • Wang J, Okamoto Y, Morishita J et al. (2006) Functional analysis of the purified anandamide-generating phospholipase D as a member of the metallo-beta-lactamase family. J Biol Chem 281:12325–12335

    PubMed  CAS  Google Scholar 

  • Wei BQ, Mikkelsen TS, McKinney MK et al. (2006) A second fatty acid amide hydrolase with variable distribution among placental mammals. J Biol Chem 281:36569–36578

    PubMed  CAS  Google Scholar 

  • Whiteside GT, Lee GP, Valenzano KJ (2007) The role of the cannabinoid CB2 receptor in pain transmission and therapeutic potential of small molecule CB2 receptor agonists. Curr Med Chem 14:917–936

    PubMed  CAS  Google Scholar 

  • Woods SC (2007) The endocannabinoid system: novel pathway for cardiometabolic Risk-factor reduction. JAAPA 20(Suppl Endocannabinoid):7–10

    Google Scholar 

  • Yao BB, Hsieh GC, Frost JM et al. (2008) In vitro and in vivo characterization of A-796260: a selective cannabinoid CB2 receptor agonist exhibiting analgesic activity in rodent pain models. Br J Pharmacol 153:390–401

    PubMed  CAS  Google Scholar 

  • Zhang D, Saraf A, Kolasa T et al. (2007) Fatty acid amide hydrolase inhibitors display broad selectivity and inhibit multiple carboxylesterases as off-targets. Neuropharmacology 52:1095–1105

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Mor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mor, M., Lodola, A. (2009). Pharmacological Tools in Endocannabinoid Neurobiology. In: Kendall, D., Alexander, S. (eds) Behavioral Neurobiology of the Endocannabinoid System. Current Topics in Behavioral Neurosciences, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88955-7_4

Download citation

Publish with us

Policies and ethics