Skip to main content

Endocannabinoid Receptor Pharmacology

  • Chapter
  • First Online:
Behavioral Neurobiology of the Endocannabinoid System

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 1))

Abstract

This chapter will review the basic pharmacology of endocannabinoid receptors. As the best-described cannabinoid receptors are G-protein-coupled receptors (GPCRs), those will be the focus of this chapter. We will start with a basic review of GPCR signaling, as these concepts are critical to understanding the function of cannabinoid receptors. Next, several features of cannabinoid receptor signaling will be presented, with an emphasis on the effectors modulated by cannabinoid receptors. Finally, we will finish with a discussion of cannabinoid receptor agonists and antagonists and future directions. The aim of this chapter is to introduce the cannabinoid receptor pharmacology that will be necessary to appreciate the intricacies of endocannabinoid signaling presented in later chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2AG:

2-Arachidonoylethanolamine

AEA:

Anandamide

GIRK:

G-protein-coupled inwardly rectifying potassium channels

GPCR:

G-protein-coupled receptor

RTK:

Receptor tyrosine kinase

References

  • Addy C et al. (2008) The acyclic CB1R inverse agonist taranabant mediates weight loss by increasing energy expenditure and decreasing caloric intake. Cell Metab 7(1):68–78

    PubMed  CAS  Google Scholar 

  • Akopian AN et al. (2008) Cannabinoids desensitize capsaicin and mustard oil responses in sensory neurons via TRPA1 activation. J Neurosci 28(5):1064–1075

    PubMed  CAS  Google Scholar 

  • Anday JK, Mercier RW (2005) Gene ancestry of the cannabinoid receptor family. Pharmacol Res 52(6):463–466

    PubMed  CAS  Google Scholar 

  • Andersson H et al. (2003) Membrane assembly of the cannabinoid receptor 1: impact of a long N-terminal tail. Mol Pharmacol 64(3):570–577

    PubMed  CAS  Google Scholar 

  • Andersson DA, Nash M, Bevan S (2007) Modulation of the cold-activated channel TRPM8 by lysophospholipids and polyunsaturated fatty acids. J Neurosci 27(12):3347–3355

    PubMed  CAS  Google Scholar 

  • Bacci A, Huguenard JR, Prince DA (2004) Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids. Nature 431(7006):312–316

    PubMed  CAS  Google Scholar 

  • Baker D et al. (2000) Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature 404(6773):84–87

    PubMed  CAS  Google Scholar 

  • Barann M et al. (2002) Direct inhibition by cannabinoids of human 5-HT3A receptors: probable involvement of an allosteric modulatory site. Br J Pharmacol 137(5):589–596

    PubMed  CAS  Google Scholar 

  • Begg M et al. (2005) Evidence for novel cannabinoid receptors. Pharmacol Ther 106(2):133–145

    PubMed  CAS  Google Scholar 

  • Benito C et al. (2007) Cannabinoid CB1 and CB2 receptors and fatty acid amide hydrolase are specific markers of plaque cell subtypes in human multiple sclerosis. J Neurosci 27(9):2396–2402

    PubMed  CAS  Google Scholar 

  • Berghuis P et al. (2005) Endocannabinoids regulate interneuron migration and morphogenesis by transactivating the TrkB receptor. Proc Natl Acad Sci USA 102(52):19115–19120

    PubMed  CAS  Google Scholar 

  • Bergman J et al. (2008) Some effects of CB1 antagonists with inverse agonist and neutral biochemical properties. Physiol Behav 93(4–5):666–670

    PubMed  CAS  Google Scholar 

  • Black SC (2004) Cannabinoid receptor antagonists and obesity. Curr Opin Investig Drugs 5(4):389–394

    PubMed  CAS  Google Scholar 

  • Bockaert J, Pin JP (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. Embo J 18(7):1723–1729

    PubMed  CAS  Google Scholar 

  • Bond RA, Ijzerman AP (2006) Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery. Trends Pharmacol Sci 27(2):92–96

    PubMed  CAS  Google Scholar 

  • Bonhaus DW et al. (1998) Dual activation and inhibition of adenylyl cyclase by cannabinoid receptor agonists: evidence for agonist-specific trafficking of intracellular responses. J Pharmacol Exp Ther 287(3):884–888

    PubMed  CAS  Google Scholar 

  • Bouaboula M et al. (1999a) Gi protein modulation induced by a selective inverse agonist for the peripheral cannabinoid receptor CB2: implication for intracellular signalization cross-regulation. Mol Pharmacol 55(3):473–480

    PubMed  CAS  Google Scholar 

  • Bouaboula M, Dussossoy D, Casellas P (1999b) Regulation of peripheral cannabinoid receptor CB2 phosphorylation by the inverse agonist SR 144528. Implications for receptor biological responses. J Biol Chem 274(29):20397–20405

    PubMed  CAS  Google Scholar 

  • Bradshaw HB, Walker JM (2005) The expanding field of cannabimimetic and related lipid mediators. Br J Pharmacol 144(4):459–465

    PubMed  CAS  Google Scholar 

  • Breivogel CS et al. (2001) Evidence for a new G protein-coupled cannabinoid receptor in mouse brain. Mol Pharmacol 60(1):155–163

    PubMed  CAS  Google Scholar 

  • Brown SM, Wager-Miller J, Mackie K (2002) Cloning and molecular characterization of the rat CB2 cannabinoid receptor. Biochim Biophys Acta 1576(3):255–264

    PubMed  CAS  Google Scholar 

  • Canals M, Milligan G (2008) Constitutive activity of the cannabinoid CB1 receptor regulates the function of co-expressed Mu opioid receptors. J Biol Chem 283(17):11424–11434

    PubMed  CAS  Google Scholar 

  • Chambers AP et al. (2007) A neutral CB1 receptor antagonist reduces weight gain in rat. Am J Physiol Regul Integr Comp Physiol 293(6):R2185–R2193

    PubMed  CAS  Google Scholar 

  • Compton DR et al. (1992) Aminoalkylindole analogs: cannabimimetic activity of a class of compounds structurally distinct from delta 9-tetrahydrocannabinol. J Pharmacol Exp Ther 263(3):1118–1126

    PubMed  CAS  Google Scholar 

  • Devane WA et al. (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258(5090):1946–1949

    PubMed  CAS  Google Scholar 

  • Dziadulewicz EK et al. (2007) Naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl) methanone: a potent, orally bioavailable human CB1/CB2 dual agonist with antihyperalgesic properties and restricted central nervous system penetration. J Med Chem 50(16):3851–3856

    PubMed  CAS  Google Scholar 

  • Ehlers CL et al. (2007) Association between single nucleotide polymorphisms in the cannabinoid receptor gene (CNR1) and impulsivity in southwest California Indians. Twin Res Hum Genet 10(6):805–811

    PubMed  Google Scholar 

  • Elphick MR, Egertova M (2005) The phylogenetic distribution and evolutionary origins of endocannabinoid signalling. Handb Exp Pharmacol 168:283–297

    PubMed  CAS  Google Scholar 

  • Fay JF, Dunham TD, Farrens DL (2005) Cysteine residues in the human cannabinoid receptor: only C257 and C264 are required for a functional receptor, and steric bulk at C386 impairs antagonist SR141716A binding. Biochemistry 44(24):8757–8769

    PubMed  CAS  Google Scholar 

  • Felder CC et al. (1993) Anandamide, an endogenous cannabimimetic eicosanoid, binds to the cloned human cannabinoid receptor and stimulates receptor-mediated signal transduction. Proc Natl Acad Sci USA 90(16):7656–7660

    PubMed  CAS  Google Scholar 

  • Felder CC et al. (1995) Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors. Mol Pharmacol 48(3):443–450

    PubMed  CAS  Google Scholar 

  • Felder CC et al. (1998) LY320135, a novel cannabinoid CB1 receptor antagonist, unmasks coupling of the CB1 receptor to stimulation of cAMP accumulation. J Pharmacol Exp Ther 284(1):291–297

    PubMed  CAS  Google Scholar 

  • Feng W, Song ZH (2003) Effects of D3.49A, R3.50A, and A6.34E mutations on ligand binding and activation of the cannabinoid-2 (CB2) receptor. Biochem Pharmacol 65(7):1077–1085

    PubMed  CAS  Google Scholar 

  • Foloppe N et al. (2008) Discovery of a novel class of selective human CB1 inverse agonists. Bioorg Med Chem Lett 18(3):1199–1206

    PubMed  CAS  Google Scholar 

  • Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83(3):1017–1066

    PubMed  CAS  Google Scholar 

  • Galandrin S, Oligny-Longpre G, Bouvier M (2007) The evasive nature of drug efficacy: implications for drug discovery. Trends Pharmacol Sci 28(8):423–430

    PubMed  CAS  Google Scholar 

  • Galiegue S et al. (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232(1):54–61

    PubMed  CAS  Google Scholar 

  • Garcia DE et al. (1998) Protein kinase C disrupts cannabinoid actions by phosphorylation of the CB1 cannabinoid receptor. J Neurosci 18(8):2834–2841

    PubMed  CAS  Google Scholar 

  • Gbahou F et al. (2003) Protean agonism at histamine H3 receptors in vitro and in vivo. Proc Natl Acad Sci USA 100(19):11086–11091

    PubMed  CAS  Google Scholar 

  • Gonsiorek W et al. (2006) Characterization of peripheral human cannabinoid receptor (hCB2) expression and pharmacology using a novel radioligand, [35S]Sch225336. J Biol Chem 281(38):28143–28151

    PubMed  CAS  Google Scholar 

  • Govaerts SJ et al. (2004) Characterization of the pharmacology of imidazolidinedione derivatives at cannabinoid CB1 and CB2 receptors. Eur J Pharmacol 495(1):43–53

    PubMed  CAS  Google Scholar 

  • Griffin G, Tao Q, Abood ME (2000) Cloning and pharmacological characterization of the rat CB2 cannabinoid receptor. J Pharmacol Exp Ther 292(3):886–894

    PubMed  CAS  Google Scholar 

  • Hamdani N et al. (2008) The CNR1 gene as a pharmacogenetic factor for antipsychotics rather than a susceptibility gene for schizophrenia. Eur Neuropsychopharmacol 18(1):34–40

    PubMed  CAS  Google Scholar 

  • Heimann AS et al. (2007) Hemopressin is an inverse agonist of CB1 cannabinoid receptors. Proc Natl Acad Sci USA 104(51):20588–20593

    PubMed  CAS  Google Scholar 

  • Herkenham M et al. (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11(2):563–583

    PubMed  CAS  Google Scholar 

  • Ho BY et al. (1999) Coupling of the expressed cannabinoid CB1 and CB2 receptors to phospholipase C and G protein-coupled inwardly rectifying K + channels. Receptor Channel 6(5):363–374

    CAS  Google Scholar 

  • Hoenicka J et al. (2007) Association in alcoholic patients between psychopathic traits and the additive effect of allelic forms of the CNR1 and FAAH endocannabinoid genes, and the 3' region of the DRD2 gene. Neurotox Res 11(1):51–60

    PubMed  CAS  Google Scholar 

  • Horswill JG et al. (2007) PSNCBAM-1, a novel allosteric antagonist at cannabinoid CB1 receptors with hypophagic effects in rats. Br J Pharmacol 152(5):805–814

    PubMed  CAS  Google Scholar 

  • Howlett AC (2005) Cannabinoid receptor signaling. Handb Exp Pharmacol 168:53–79

    Google Scholar 

  • Howlett AC et al. (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54(2):161–202

    PubMed  CAS  Google Scholar 

  • Hsieh C et al. (1999) Internalization and recycling of the CB1 cannabinoid receptor. J Neurochem 73(2):493–501

    PubMed  CAS  Google Scholar 

  • Ibrahim MM et al. (2005) CB2 cannabinoid receptor activation produces antinociception by stimulating peripheral release of endogenous opioids. Proc Natl Acad Sci USA 102(8):3093–3098

    PubMed  CAS  Google Scholar 

  • Jhaveri MD et al. (2008) Evidence for a novel functional role of cannabinoid CB receptors in the thalamus of neuropathic rats. Eur J NeuroSci 27(9):2482

    Google Scholar 

  • Jin W et al. (1999) Distinct domains of the CB1 cannabinoid receptor mediate desensitization and internalization. J Neurosci 19(10):3773–3780

    PubMed  CAS  Google Scholar 

  • Karsak M et al. (2005) Cannabinoid receptor type 2 gene is associated with human osteoporosis. Hum Mol Genet 14(22):3389–3396

    PubMed  CAS  Google Scholar 

  • Kenakin T (2004) Efficacy as a vector: the relative prevalence and paucity of inverse agonism. Mol Pharmacol 65(1):2–11

    PubMed  CAS  Google Scholar 

  • Kreitzer AC, Carter AG, Regehr WG (2002) Inhibition of interneuron firing extends the spread of endocannabinoid signaling in the cerebellum. Neuron 34(5):787–796

    PubMed  CAS  Google Scholar 

  • Lauckner JE, Hille B, Mackie K (2005) The cannabinoid agonist WIN55, 212-2 increases intracellular calcium via CB1 receptor coupling to Gq/11 G proteins. Proc Natl Acad Sci USA 102(52):19144–19149

    PubMed  CAS  Google Scholar 

  • Lauckner JE et al. (2008) GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci USA 105(7):2699–2704

    PubMed  CAS  Google Scholar 

  • Lavey BJ et al. (2005) Triaryl bis-sulfones as a new class of cannabinoid CB2 receptor inhibitors: identification of a lead and initial SAR studies. Bioorg Med Chem Lett 15(3):783–786

    PubMed  CAS  Google Scholar 

  • Lin S et al. (1998) Novel analogues of arachidonylethanolamide (anandamide): affinities for the CB1 and CB2 cannabinoid receptors and metabolic stability. J Med Chem 41(27):5353–5361

    PubMed  CAS  Google Scholar 

  • Luk T et al. (2004) Identification of a potent and highly efficacious, yet slowly desensitizing CB1 cannabinoid receptor agonist. Br J Pharmacol 142(3):495–500

    PubMed  CAS  Google Scholar 

  • Mackie K et al. (1995) Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J Neurosci 15(10):6552–6561

    PubMed  CAS  Google Scholar 

  • Maingret F et al. (2001) The endocannabinoid anandamide is a direct and selective blocker of the background K(+) channel TASK-1. Embo J 20(1–2):47–54

    PubMed  CAS  Google Scholar 

  • Marriott KS, Huffman JW (2008) Recent advances in the development of selective ligands for the cannabinoid CB(2) receptor. Curr Top Med Chem 8(3):187–204

    PubMed  CAS  Google Scholar 

  • Martini L et al. (2007) Ligand-induced down-regulation of the cannabinoid 1 receptor is mediated by the G-protein-coupled receptor-associated sorting protein GASP1. Faseb J 21(3):802–811

    PubMed  CAS  Google Scholar 

  • Matsuda LA et al. (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346(6284):561–564

    PubMed  CAS  Google Scholar 

  • Mauler F et al. (2002) Characterization of the diarylether sulfonylester (-)-(R)-3-(2-hydroxymethylindanyl-4-oxy) phenyl-4, 4, 4-trifluoro-1-sulfonate (BAY 38-7271) as a potent cannabinoid receptor agonist with neuroprotective properties. J Pharmacol Exp Ther 302(1):359–368

    PubMed  CAS  Google Scholar 

  • McAllister SD et al. (2002) A critical role for a tyrosine residue in the cannabinoid receptors for ligand recognition. Biochem Pharmacol 63(12):2121–2136

    PubMed  CAS  Google Scholar 

  • McAllister SD et al. (2003) An aromatic microdomain at the cannabinoid CB(1) receptor constitutes an agonist/inverse agonist binding region. J Med Chem 46(24):5139–5152

    PubMed  CAS  Google Scholar 

  • McPartland JM, Norris RW, Kilpatrick CW (2007) Coevolution between cannabinoid receptors and endocannabinoid ligands. Gene 397(1–2):126–135

    Google Scholar 

  • Morello JP, Bouvier M (1996) Palmitoylation: a post-translational modification that regulates signalling from G-protein coupled receptors. Biochem Cell Biol 74(4):449–457

    PubMed  CAS  Google Scholar 

  • Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoid. Nature (London, United Kingdom) 6441:61–65

    Google Scholar 

  • Niehaus JL et al. (2007) CB1 cannabinoid receptor activity is modulated by the cannabinoid receptor interacting protein CRIP 1a. Mol Pharmacol 72(6):1557–1566

    PubMed  CAS  Google Scholar 

  • Nyiri G et al. (2005) CB1 cannabinoid receptors are enriched in the perisynaptic annulus and on preterminal segments of hippocampal GABAergic axons. Neuroscience 136(3):811–822

    PubMed  CAS  Google Scholar 

  • Ohta H et al. (2008) Imine derivatives as new potent and selective CB2 cannabinoid receptor agonists with an analgesic action. Bioorg Med Chem 16(3):1111–1124

    PubMed  CAS  Google Scholar 

  • Oka S et al. (2007) Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem Biophys Res Commun 362(4):928–934

    PubMed  CAS  Google Scholar 

  • Oz M (2006) Receptor-independent actions of cannabinoids on cell membranes: focus on endocannabinoids. Pharmacol Ther 111(1):114–144

    PubMed  CAS  Google Scholar 

  • Oz M et al. (2004) Differential effects of endogenous and synthetic cannabinoids on alpha7-nicotinic acetylcholine receptor-mediated responses in Xenopus Oocytes. J Pharmacol Exp Ther 310(3):1152–1160

    PubMed  CAS  Google Scholar 

  • Palczewski K et al. (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289(5480):739–745

    PubMed  CAS  Google Scholar 

  • Poling JS et al. (1996) Anandamide, an endogenous cannabinoid, inhibits Shaker-related voltage-gated K+ channels. Neuropharmacology 35(7):983–991

    PubMed  CAS  Google Scholar 

  • Portier M et al. (1999) SR 144528, an antagonist for the peripheral cannabinoid receptor that behaves as an inverse agonist. J Pharmacol Exp Ther 288(2):582–589

    PubMed  CAS  Google Scholar 

  • Price MR et al. (2005) Allosteric modulation of the cannabinoid CB1 receptor. Mol Pharmacol 68(5):1484–1495

    PubMed  CAS  Google Scholar 

  • Pryce G, Baker D (2007) Control of spasticity in a multiple sclerosis model is mediated by CB1, not CB2, cannabinoid receptors. Br J Pharmacol 150(4):519–525

    PubMed  CAS  Google Scholar 

  • Reggio PH (2002) Endocannabinoid structure–activity relationships for interaction at the cannabinoid receptors. Prostaglandins Leukot Essent Fatty Acids 66(2–3):143–160

    PubMed  CAS  Google Scholar 

  • Richardson D et al. (2007) Quantitative profiling of endocannabinoids and related compounds in rat brain using liquid chromatography-tandem electrospray ionization mass spectrometry. Anal Biochem 360(2):216–226

    PubMed  CAS  Google Scholar 

  • Rinaldi-Carmona M et al. (1996) Characterization and distribution of binding sites for [3H]-SR 141716A, a selective brain (CB1) cannabinoid receptor antagonist, in rodent brain. Life Sci 58(15):1239–1247

    PubMed  CAS  Google Scholar 

  • Rinaldi-Carmona M et al. (1998) Modulation of CB1 cannabinoid receptor functions after a long-term exposure to agonist or inverse agonist in the Chinese hamster ovary cell expression system. J Pharmacol Exp Ther 287(3):1038–1047

    PubMed  CAS  Google Scholar 

  • Ross RA (2003) Anandamide and vanilloid TRPV1 receptors. Br J Pharmacol 140(5):790–801

    PubMed  CAS  Google Scholar 

  • Ross RA et al. (1999) Agonist-inverse agonist characterization at CB1 and CB2 cannabinoid receptors of L759633, L759656, and AM630. Br J Pharmacol 126(3):665–672

    PubMed  CAS  Google Scholar 

  • Ryan WJ et al. (1997) Potent anandamide analogs: the effect of changing the length and branching of the end pentyl chain. J Med Chem 40(22):3617–3625

    PubMed  CAS  Google Scholar 

  • Ryberg E et al. (2005) Identification and characterisation of a novel splice variant of the human CB1 receptor. FEBS Lett 579(1):259–264

    PubMed  CAS  Google Scholar 

  • Ryberg E et al. (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152(7):1092–1101

    PubMed  CAS  Google Scholar 

  • Schonbrunn A (2007) Selective agonism in somatostatin receptor signaling and regulation. Mol Cell Endocrinol 286(1–2):35–39

    PubMed  Google Scholar 

  • Seifert J et al. (2007) No association of CNR1 gene variations with susceptibility to schizophrenia. Neurosci Lett 426(1):29–33

    PubMed  CAS  Google Scholar 

  • Selinger Z (2008) Discovery of G protein signaling. Annu Rev Biochem 77:1–13

    Google Scholar 

  • Shire D et al. (1995) An amino-terminal variant of the central cannabinoid receptor resulting from alternative splicing. J Biol Chem 270(8):3726–3731

    PubMed  CAS  Google Scholar 

  • Shire D et al. (1996) Structural features of the central cannabinoid CB1 receptor involved in the binding of the specific CB1 antagonist SR 141716A. J Biol Chem 271(12):6941–6946

    PubMed  CAS  Google Scholar 

  • Shire D et al. (1999) Cannabinoid receptor interactions with the antagonists SR 141716A and SR 144528. Life Sci 65(6–7):627–635

    PubMed  CAS  Google Scholar 

  • Shoemaker JL et al. (2005) Agonist-directed trafficking of response by endocannabinoids acting at CB2 receptors. J Pharmacol Exp Ther 315(2):828–838

    PubMed  CAS  Google Scholar 

  • Siegfried Z et al. (2004) Association study of cannabinoid receptor gene (CNR1) alleles and anorexia nervosa: differences between restricting and binging/purging subtypes. Am J Med Genet B Neuropsychiatr Genet 125(1):126–130

    Google Scholar 

  • Sim LJ, Selley DE, Childers SR (1995) In vitro autoradiography of receptor-activated G proteins in rat brain by agonist-stimulated guanylyl 5'-[gamma-[35S]thio]-triphosphate binding. Proc Natl Acad Sci USA 92(16):7242–7246

    PubMed  CAS  Google Scholar 

  • Sim LJ et al. (1996) Differences in G-protein activation by mu- and delta-opioid, and cannabinoid, receptors in rat striatum. Eur J Pharmacol 307(1):97–105

    PubMed  CAS  Google Scholar 

  • Sink KS et al. (2008) The novel cannabinoid CB1 receptor neutral antagonist AM4113 suppresses food intake and food-reinforced behavior but does not induce signs of nausea in rats. Neuropsychopharmacology 33(4):946–955

    PubMed  CAS  Google Scholar 

  • Sipe JC et al. (2005) Reduced endocannabinoid immune modulation by a common cannabinoid 2 (CB2) receptor gene polymorphism: possible risk for autoimmune disorders. J Leukoc Biol 78(1):231–238

    PubMed  CAS  Google Scholar 

  • Song ZH, Bonner TI (1996) A lysine residue of the cannabinoid receptor is critical for receptor recognition by several agonists but not WIN55212-2. Mol Pharmacol 49(5):891–896

    PubMed  CAS  Google Scholar 

  • Stella N, Schweitzer P, Piomelli D (1997) A second endogenous cannabinoid that modulates long-term potentiation. Nature 388(6644):773–778

    PubMed  CAS  Google Scholar 

  • Sugiura T et al. (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215(1):89–97

    PubMed  CAS  Google Scholar 

  • Sun Y, McGarrigle D, Huang XY (2007) When a G protein-coupled receptor does not couple to a G protein. Mol Biosyst 3(12):849–854

    PubMed  CAS  Google Scholar 

  • Tao Q, Abood ME (1998) Mutation of a highly conserved aspartate residue in the second transmembrane domain of the cannabinoid receptors, CB1 and CB2, disrupts G-protein coupling. J Pharmacol Exp Ther 285(2):651–658

    PubMed  CAS  Google Scholar 

  • Thomas BF et al. (1998) Comparative receptor binding analyses of cannabinoid agonists and antagonists. J Pharmacol Exp Ther 285(1):285–292

    PubMed  CAS  Google Scholar 

  • Tian X et al. (2005) The conformation, location, and dynamic properties of the endocannabinoid ligand anandamide in a membrane bilayer. J Biol Chem 280(33):29788–29795

    PubMed  CAS  Google Scholar 

  • Ueda Y et al. (2005) Involvement of cannabinoid CB(2) receptor-mediated response and efficacy of cannabinoid CB(2) receptor inverse agonist, JTE-907, in cutaneous inflammation in mice. Eur J Pharmacol 520(1–3):164–171

    PubMed  CAS  Google Scholar 

  • Ujike H et al. (2002) CNR1, central cannabinoid receptor gene, associated with susceptibility to hebephrenic schizophrenia. Mol Psychiatry 7(5):515–518

    PubMed  CAS  Google Scholar 

  • Urban JD et al. (2007) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320(1):1–13

    PubMed  CAS  Google Scholar 

  • Valk PJ et al. (1997) The genes encoding the peripheral cannabinoid receptor and alpha-L-fucosidase are located near a newly identified common virus integration site, Evi11. J Virol 71(9):6796–6804

    PubMed  CAS  Google Scholar 

  • Van Sickle MD et al. (2005) Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 310(5746):329–332

    PubMed  Google Scholar 

  • Vasquez C, Lewis DL (1999) The CB1 cannabinoid receptor can sequester G-proteins, making them unavailable to couple to other receptors. J Neurosci 19(21):9271–9280

    PubMed  CAS  Google Scholar 

  • Waldeck-Weiermair M et al. (2008) Integrin clustering enables anandamide-induced Ca2+ signaling in endothelial cells via GPR55 by protection against CB1-receptor-triggered repression. J Cell Sci 121:1704–1717

    Google Scholar 

  • Whiteside GT et al. (2005) A role for cannabinoid receptors, but not endogenous opioids, in the antinociceptive activity of the CB2-selective agonist, GW405833. Eur J Pharmacol 528(1–3):65–72

    PubMed  CAS  Google Scholar 

  • Wotherspoon G et al. (2005) Peripheral nerve injury induces cannabinoid receptor 2 protein expression in rat sensory neurons. Neuroscience 135(1):235–245

    PubMed  CAS  Google Scholar 

  • Wright KL, Duncan M, Sharkey KA (2008) Cannabinoid CB2 receptors in the gastrointestinal tract: a regulatory system in states of inflammation. Br J Pharmacol 153(2):263–270

    PubMed  CAS  Google Scholar 

  • Yao BB et al. (2006) In vitro pharmacological characterization of AM1241: a protean agonist at the cannabinoid CB2 receptor? Br J Pharmacol 149(2):145–154

    PubMed  CAS  Google Scholar 

  • Yao BB et al. (2008) In vitro and in vivo characterization of A-796260: a selective cannabinoid CB2 receptor agonist exhibiting analgesic activity in rodent pain models. Br J Pharmacol 153(2):390–401

    PubMed  CAS  Google Scholar 

  • Zhang J et al. (2003) Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Eur J Neurosci 17(12):2750–2754

    PubMed  Google Scholar 

  • Zuo L et al. (2007) CNR1 variation modulates risk for drug and alcohol dependence. Biol Psychiatry 62(6):616–626

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betty Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yao, B., Mackie, K. (2009). Endocannabinoid Receptor Pharmacology. In: Kendall, D., Alexander, S. (eds) Behavioral Neurobiology of the Endocannabinoid System. Current Topics in Behavioral Neurosciences, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88955-7_2

Download citation

Publish with us

Policies and ethics